TY - JOUR A1 - Schmälzlin, Elmar Gerd A1 - Moralejo, Benito A1 - Gersonde, Ingo A1 - Schleusener, Johannes A1 - Darvin, Maxim E. A1 - Thiede, Gisela A1 - Roth, Martin M. T1 - Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination JF - Journal of biomedical optics N2 - Imaging Raman spectroscopy can be used to identify cancerous tissue. Traditionally, a step-by-step scanning of the sample is applied to generate a Raman image, which, however, is too slow for routine examination of patients. By transferring the technique of integral field spectroscopy (IFS) from astronomy to Raman imaging, it becomes possible to record entire Raman images quickly within a single exposure, without the need for a tedious scanning procedure. An IFS-based Raman imaging setup is presented, which is capable of measuring skin ex vivo or in vivo. It is demonstrated how Raman images of healthy and cancerous skin biopsies were recorded and analyzed. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. KW - Raman spectroscopy KW - cancer diagnosis KW - Raman imaging KW - multichannel KW - astronomy KW - epidermis KW - dermis Y1 - 2018 U6 - https://doi.org/10.1117/1.JBO.23.10.105001 SN - 1083-3668 SN - 1560-2281 VL - 23 IS - 10 PB - SPIE CY - Bellingham ER - TY - JOUR A1 - Oesterhelt, Christine A1 - Schmälzlin, Elmar A1 - Schmitt, Jürgen M. A1 - Lokstein, Heiko T1 - Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria N2 - Extremophilic organisms are gaining increasing interest because of their unique metabolic capacities and great biotechnological potential. The unicellular acidophilic and mesothermophilic red alga Galdieria sulphuraria (074G) can grow autotrophically in light as well as heterotrophically in the dark. In this paper, the effects of externally added glucose on primary and secondary photosynthetic reactions are assessed to elucidate mixotrophic capacities of the alga. Photosynthetic O-2 evolution was quantified in an open system with a constant Supply Of CO2 to avoid rapid volatilization of dissolved inorganic carbon at low pH levels. In the presence of glucose, O-2 evolution was repressed even in illuminated cells. Ratios of variable to maximum chlorophyll fluorescence (F-v/F-m) and 77 Kfluorescence spectra indicated a reduced photochemical efficiency of photosystem II. The results were corroborated by strongly reduced levels of the photosystem 11 reaction centre protein D1. The downregulation of primary photosynthetic reactions was accompanied by reduced levels of the Calvin Cycle enzyme ribu lose-1,5-bisphosphate carboxylaselfoxygenase (Rubisco). Both effects depended on functional sugar uptake and are thus initiated by intracellular rather than extracellular glucose. Following glucose depletion, photosynthetic O-2 evolution of illuminated cells commenced after 15 h and Rubisco levels again reached the levels of autotrophic cells. It is concluded that true mixotrophy, involving electron transport across both photosystems, does not occur in G. sulphuraria 074G, and that heterotrophic growth is favoured over autotrophic growth if sufficient organic carbon is available. Y1 - 2007 UR - http://onlinelibrary.wiley.com/doi/10.1111/tpj.2007.51.issue-3/issuetoc U6 - https://doi.org/10.1111/j.1365-313X.2007.03159.x ER - TY - GEN A1 - Schmälzlin, Elmar A1 - Walz, Bernd A1 - Klimant, Ingo A1 - Schewe, Bettina A1 - Löhmannsröben, Hans-Gerd T1 - Monitoring hormone-induced oxygen consumption in the salivary glands of the blowfly, Calliphora vicina, by use of luminescent microbeads N2 - The salivary glands of the blowfly were injected with luminescent oxygen-sensitive microbeads. The changes in oxygen content within individual gland tubules during hormone-induced secretory activity were quantified. The measurements are based on an upgraded phase-modulation technique, where the phase shift of the sensor phosphorescence is determined independently from concentration and background signals. We show that the combination of a lock-in amplifier with a fluorescence microscope results in a convenient setup to measure oxygen concentrations within living animal tissues at the cellular level. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 006 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12206 ER - TY - GEN A1 - Löhmannsröben, Hans-Gerd A1 - Beck, Michael A1 - Hildebrandt, Niko A1 - Schmälzlin, Elmar A1 - van Dongen, Joost T. T1 - New challenges in biophotonics : laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring N2 - Two examples of our biophotonic research utilizing nanoparticles are presented, namely laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring. Results of the work include significantly enhanced sensitivity of a homogeneous fluorescence immunoassay and markedly improved spatial resolution of oxygen gradients in root nodules of a legume species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 018 KW - Sauerstoff KW - Quantenpunkt KW - Lumineszenz KW - Immunoassay KW - Energietransfer KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Nanopartikel KW - Lanthanoide KW - Optode KW - Förster Resonanz Energie Transfer KW - Biophotonik KW - biophotonics KW - nanoparticles KW - immunoassay KW - oxygen KW - optode Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-10120 ER - TY - GEN A1 - Eich, Susanne A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd T1 - Distributed fiber optical sensing of oxygen with optical time domain reflectometry T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1085 KW - OTDR KW - optical sensing KW - molecular oxygen KW - triangular-[4] phenylene Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476659 SN - 1866-8372 IS - 1085 ER - TY - JOUR A1 - Oliver, Sandra N. A1 - Lunn, John Edward A1 - Urbanczyk-Wochniak, Ewa A1 - Lytovchenko, Anna A1 - van Dongen, Joost T. A1 - Faix, Benjamin A1 - Schmälzlin, Elmar A1 - Fernie, Alisdair R. A1 - Schmäelzlin, E. A1 - Geigenberger, Peter T1 - Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase N2 - The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo. Y1 - 2008 UR - http://www.plantphysiol.org/content/148/3/1640.full U6 - https://doi.org/10.1104/pp.108.126516 ER - TY - GEN A1 - Löhmannsröben, Hans-Gerd A1 - Kantor, Zoltan A1 - Kumke, Michael Uwe A1 - Schmälzlin, Elmar A1 - Reich, Oliver T1 - OPQS – optische Prozess- und Qualitäts-Sensorik N2 - Im vorliegenden Beitrag wird an Hand dreier Beispiele der Einsatz von optischer Sensorik zur Produktcharakterisierung dargestellt, nämlich Untersuchungen zum O2-Gehalt in Fruchtsäften, zur Isotopiesignatur von CO2 in Mineralwässern und zu Lichtstreueigenschaften eines Sonnenschutzmittels. Inhalt: Bestimmung von O2 mit Lumineszenzsonden Isotopenselektive Bestimmung von CO2 mit TDLAS Optische Charakterisierung stark streuender Materialien mit Photonendichtewellen T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 028 KW - Sensorik KW - Prozesskontrolle KW - Absorption KW - Lumineszenz KW - Lichtstreuung KW - Isotopie Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13205 ER - TY - JOUR A1 - Eich, Susanne A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd T1 - Distributed fiber optical sensing of Oxygen with optical time domain reflectometry JF - Sensors N2 - In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. KW - OTDR KW - optical sensing KW - molecular oxygen KW - triangular-[4] phenylene Y1 - 2013 U6 - https://doi.org/10.3390/s130607170 SN - 1424-8220 VL - 13 IS - 6 SP - 7170 EP - 7183 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zabalza, Ana A1 - van Dongen, Joost T. A1 - Fröhlich, Anja A1 - Oliver, Sandra N. A1 - Faix, Benjamin A1 - Gupta, Kapuganti Jagadis A1 - Schmalzlin, Elmar A1 - Igal, Maria A1 - Orcaray, Luis A1 - Royuela, Mercedes A1 - Geigenberger, Peter T1 - Regulation of respiration and fermentation to control the plant internal oxygen concentration N2 - Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability. Y1 - 2009 UR - http://www.plantphysiol.org/ U6 - https://doi.org/10.1104/pp.108.129288 SN - 0032-0889 ER - TY - JOUR A1 - Ast, Cindy A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd A1 - van Dongen, Joost T. T1 - Optical oxygen micro- and nanosensors for plant applications JF - Sensors N2 - Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters. KW - oxygen sensor KW - biosensors KW - microsensors KW - nanosensors KW - endogenous sensor proteins KW - dual-frequency phase-modulation KW - phosphorescence quenching KW - plant science Y1 - 2012 U6 - https://doi.org/10.3390/s120607015 SN - 1424-8220 VL - 12 IS - 6 SP - 7015 EP - 7032 PB - MDPI CY - Basel ER -