TY - JOUR A1 - Das, Abhijna A1 - Noack, Sebastian A1 - Schlaad, Helmut A1 - Reiter, Günter A1 - Reiter, Renate T1 - Exploring pathways to equilibrate Langmuir polymer films JF - Langmuir N2 - Focusing on the phase-coexistence region in Langmuir films of poly(L-lactide), we investigated changes in nonequilibrated morphologies and the corresponding features of the isotherms induced by different experimental pathways of lateral compression and expansion. In this coexistence region, the surface pressure II was larger than the expected equilibrium value and was found to increase upon compression, i.e., exhibited a nonhorizontal plateau. As shown earlier by using microscopic techniques [Langmuir 2019, 35, 6129-6136], in this plateau region, well-ordered mesoscopic clusters coexisted with a surrounding matrix phase. We succeeded in reducing Pi either by slowing down the rate of compression or through increasing the waiting time after stopping the movement of the barriers, which allowed for relaxations in the coexistence region. Intriguingly, the most significant pressure reduction was observed when recompressing a film that had already been compressed and expanded, if the recompression was started from an area value smaller than the one anticipated for the onset of the coexistence region. This observation suggests a "self-seeding" behavior, i.e., pre-existing nuclei allowed to circumvent the nucleation step. The decrease in Pi was accompanied by a transformation of the initially formed metastable mesoscopic clusters into a thermodynamically favored filamentary morphology. Our results demonstrate that it is practically impossible to obtain fully equilibrated coexisting phases in a Langmuir polymer film, neither under conditions of extremely slow continuous compression nor for long waiting times at a constant area in the coexistence region which allow for reorganization. Y1 - 2020 U6 - https://doi.org/10.1021/acs.langmuir.0c01268 SN - 0743-7463 VL - 36 IS - 28 SP - 8184 EP - 8192 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Hess, Andreas A1 - Schmidt, Bernhard Volkmar Konrad Jakob A1 - Schlaad, Helmut T1 - Aminolysis induced functionalization of (RAFT) polymer-dithioester with thiols and disulfides JF - Polymer Chemistry N2 - A series of polystyrene- and poly(methyl methacrylate)-dithioesters was subjected to aminolysis under ambient atmospheric conditions, i.e., in the presence of oxygen. Polymer disulfide coupling by oxidation occurred within tens of minutes and the yield of disulfide-coupled polymer increased with decreasing polymer molar mass. Oxidation of thiolates is usually an unwanted side reaction, here it is employed to obtain exclusively polymeric mixed disulfides through in situ aminolysis/functionalization in the presence of a thiol. The in situ aminolysis/functionalization in the presence of a disulfide, Ellman's reagent or polymer disulfide, resulted in the exclusive formation of polymer-dithionitrobenzoic acid, which can be further reacted with a thiol to exchange the terminal functionality, or block copolymer with dynamic disulfide linker, respectively. Y1 - 2020 U6 - https://doi.org/10.1039/d0py01365j SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 48 SP - 7677 EP - 7684 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable JF - Macromolecular rapid communications N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - https://doi.org/10.1002/marc.202000485 SN - 1022-1336 SN - 1521-3927 VL - 42 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kaya, Kerem A1 - Debsharma, Tapas A1 - Schlaad, Helmut A1 - Yagci, Yusuf T1 - Cellulose-based polyacetals by direct and sensitized photocationic ring-opening polymerization of levoglucosenyl methyl ether JF - Polymer Chemistry N2 - This study aims to explore the photoinitiated cationic ring-opening polymerization of levoglucosenyl methyl ether (LGME), a chemical obtained from the most abundant biomass - cellulose. Direct and sensitized photopolymerizations of LGME using photoinitiators acting at the near UV or visible range in conjunction with diphenyliodonium hexafluoroantimonate (DPI) yielded unsaturated polyacetals with varying molar masses and distributions. Y1 - 2020 U6 - https://doi.org/10.1039/d0py01307b SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 43 SP - 6884 EP - 6889 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Al-Naji, Majd A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - New (and old) monomers from biorefineries to make polymer chemistry more sustainable T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1385 KW - biodegradable polymers KW - biorefineries KW - carbohydrate‐ based KW - monomers KW - green polymers KW - lignocellulosic biomass Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570614 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Matic, Aleksandar A1 - Hess, Andreas A1 - Schanzenbach, Dirk A1 - Schlaad, Helmut T1 - Epoxidized 1,4-polymyrcene JF - Polymer chemistry N2 - 1,4-Polymyrcene was synthesized by anionic polymerization and epoxidized using meta-chloroperbenzoic acid. Samples with different degrees of epoxidation (25%, 49%, 74%, and 98%) were prepared and examined according to their chemical and thermal properties. Epoxidation was found to increase the glass transition temperature (T-g = 14 degrees C for the 98% epoxidized 1,4-polymyrcene) as well as the shelf live (>10 months). The trisubstituted epoxide groups were remarkably stable against nucleophiles under basic conditions but cross-linked or hydrolyzed in the presence of an acid. Also, highly epoxidized 1,4-polymyrcene readily cross-linked upon annealing at 260 degrees C to produce an epoxy resin. KW - comb poly(beta-myrcene)-graft-poly(l-lactide) copolymers KW - thermoplastic elastomer synthesis KW - myrcen KW - polymerization KW - epoxidation Y1 - 2020 U6 - https://doi.org/10.1039/c9py01783f SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 7 SP - 1364 EP - 1368 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Glatzel, Julia A1 - Noack, Sebastian A1 - Schanzenbach, Dirk A1 - Schlaad, Helmut T1 - Anionic polymerization of dienes in ‘green’ solvents JF - Polymer international N2 - Isoprene and beta-myrcene were polymerized by anionic polymerization in bulk and in the 'green' ether solvents cyclopentyl methyl ether and 2-methyltetrahydrofuran and, for comparison, in cyclohexane and tetrahydrofuran. The polydienes produced in bulk and in cyclohexane contained high amounts of 1,4 units (>90%) whereas those produced in ether solvents were rich in 1,2 and 3,4 units (36%-86%). Comparison of the microstructures and glass transition temperatures of the polydienes obtained in the various solvents suggests that conventionally used solvents can be substituted by environmentally more friendly alternatives. KW - isoprene KW - β‐myrcene KW - anionic polymerization KW - green KW - solvents KW - microstructure KW - glass transition Y1 - 2020 U6 - https://doi.org/10.1002/pi.6152 SN - 0959-8103 SN - 1097-0126 VL - 70 IS - 2 SP - 181 EP - 184 PB - Wiley CY - Hoboken ER -