TY - JOUR A1 - Ballato, Paolo A1 - Landgraf, Angela A1 - Schildgen, Taylor F. A1 - Stockli, Daniel F. A1 - Fox, Matthew A1 - Ghassemi, Mohammad R. A1 - Kirby, Eric A1 - Strecker, Manfred T1 - The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran JF - Earth & planetary science letters N2 - The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved. KW - orogenic processes KW - surface processes KW - base-level fall KW - erosion KW - rock uplift KW - knickpoints Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.05.051 SN - 0012-821X SN - 1385-013X VL - 425 SP - 204 EP - 218 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Garcin, Yannick A1 - Schildgen, Taylor F. A1 - Acosta, Veronica Torres A1 - Melnick, Daniel A1 - Guillemoteau, Julien A1 - Willenbring, Jane A1 - Strecker, Manfred T1 - Short-lived increase in erosion during the African Humid Period BT - evidence from the northern Kenya Rift JF - Earth & planetary science letters N2 - The African Humid Period (AHP) between similar to 15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (similar to 2150 km(2)), deep (similar to 300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic Be-10 in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr(-1). Be-10-derived paleo-erosion rates at similar to 11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr(-1), and were 2.7 to 6.6 times faster than at present. In contrast, at similar to 8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because Be-10-derived erosion rates integrate over several millennia; we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were 25 to 300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (similar to 4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern Be-10-based erosion rate of,similar to 0.013 mm yr(-1). Our simulations also flag the two highest Be-10-derived erosion rates at 11.8 kyr BP related to nonuniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at 15 or similar to 12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation. KW - northern Kenya Rift KW - Baragoi KW - paleo-delta KW - African Humid Period KW - erosion KW - Be-10 Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2016.11.017 SN - 0012-821X SN - 1385-013X VL - 459 SP - 58 EP - 69 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rosenkranz, Ruben A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Spiegel, Cornelia T1 - Coupling erosion and topographic development in the rainiest place on Earth BT - Reconstructing the Shillong Plateau uplift history with in-situ cosmogenic Be-10 JF - Earth & planetary science letters N2 - The uplift of the Shillong Plateau, in northeast India between the Bengal floodplain and the Himalaya Mountains, has had a significant impact on regional precipitation patterns, strain partitioning, and the path of the Brahmaputra River. Today, the plateau receives the highest measured yearly rainfall in the world and is tectonically active, having hosted one of the strongest intra-plate earthquakes ever recorded. Despite the unique tectonic and climatic setting of this prominent landscape feature, its exhumation and surface uplift history are poorly constrained. We collected 14 detrital river sand and 3 bedrock samples from the southern margin of the Shillong Plateau to measure erosion rates using the terrestrial cosmogenic nuclide 10Be. The calculated bedrock erosion rates range from 2.0 to 5.6 m My−1, whereas catchment average erosion rates from detrital river sands range from 48 to 214 m My−1. These rates are surprisingly low in the context of steep, tectonically active slopes and extreme rainfall. Moreover, the highest among these rates, which occur on the low-relief plateau surface, appear to have been affected by anthropogenic land-use change. To determine the onset of surface uplift, we coupled the catchment averaged erosion rates with topographic analyses of the plateau's southern margin. We interpolated an inclined, pre-incision surface from minimally eroded remnants along the valley interfluves and calculated the eroded volume of the valleys carved beneath the surface. The missing volume was then divided by the volume flux derived from the erosion rates to obtain the onset of uplift. The results of this calculation, ranging from 3.0 to 5.0 Ma for individual valleys, are in agreement with several lines of stratigraphic evidence from the Brahmaputra and Bengal basin that constrain the onset of topographic uplift, specifically the onset of flexural loading and the transgression from deltaic to marine deposition. Ultimately, our data corroborate the hypothesis that surface uplift was decoupled from the onset of rapid exhumation, which occurred several millions of years earlier. KW - river profile analysis KW - land-use change KW - Be-10 KW - orographic rainfall KW - erosion Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2017.11.047 SN - 0012-821X SN - 1385-013X VL - 483 SP - 39 EP - 51 PB - Elsevier CY - Amsterdam ER -