TY - JOUR A1 - Timmer, Marco A1 - Theiss, Hans A1 - Jürchott, Katrin A1 - Ries, Christian A1 - Paron, Igor A1 - Franz, W. A1 - Selbig, Joachim A1 - Guo, Ketai A1 - Tonn, Jörg A1 - Schichor, Christian T1 - Stromal-Derived Factor 1a (Sdf-1a), a Homing Factor for Mesenchymal Progenitor Cells, Is Elevated in Tumor Tissue and Plasma of Glioma Patients N2 - Malignant gliomas are a fatal disease lacking sufficient possibilities for early diagnosis and chemical markers to detect remission or relapse. The recruitment of progenitor cells such as mesenchymal stem cells (MSC) is a main feature of gliomas. Stromal cell-derived factor-1 (SDF-1), a chemokine produced in glioma cell lines, enhances migration in MSC and has been associated with cell survival and apoptosis in gliomas. Therefore, this study was performed to evaluate (i) whether SDF-1 and its receptors are expressed in human malignant gliomas in situ and (ii) if SDF-1 might potentially play a role in recruiting MSCs into human glioma. In glioblastoma tissue, immunohistochemistry revealed that SDF-1 and its receptor CXCR4 are expressed in regions of angiogenesis and necrosis, and qPCR showed that SDF-1 is elevated. Public expression data indicated that CXCR4 was upregulated. The latter data also illustrate that SDF-1 could be up- or downregulated in glioma compared to normal brain in a transcript-specific manner. In plasma, SDF-1 is elevated in glioma patients. The level is reduced by both dexamethasone intake and surgery. Dexamethasone also decreased SDF-1 production in cells in vitro. The undirected migration of human MSC (hMSC) was not enhanced by the addition of SDF-1. However, SDF-1 stimulated directed invasion of hMSC in a dose-dependent manner. Taken together, we show that SDF-1 is a potent chemoattractant of progenitor cells such as hMSCs and that its expression is elevated in glioma tissue, which results in elevated SDF-1 levels in the patient's plasma samples with concomittant decrease after tumor resection. The fact that elevated SDF-1 plasma levels are significantly decreased after tumor surgery could be a first hint that SDF-1 might act as tumor marker for malignant gliomas in order to detect disease progression or remission, respectively. Y1 - 2010 UR - http://neuro-oncology.oxfordjournals.org/ SN - 1522-8517 ER - TY - JOUR A1 - Schichor, Christian A1 - Albrecht, Valerie A1 - Korte, Benjamin A1 - Buchner, Alexander A1 - Riesenberg, Rainer A1 - Mysliwietz, Josef A1 - Paron, Igor A1 - Motaln, Helena A1 - Turnsek, Tamara Lah A1 - Juerchott, Kathrin A1 - Selbig, Joachim A1 - Tonn, Jörg-Christian T1 - Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro JF - Experimental neurology N2 - The interaction of human mesenchymal stem cells (hMSCs) and tumor cells has been investigated in various contexts. HMSCs are considered as cellular treatment vectors based on their capacity to migrate towards a malignant lesion. However, concerns about unpredictable behavior of transplanted hMSCs are accumulating. In malignant gliomas, the recruitment mechanism is driven by glioma-secreted factors which lead to accumulation of both, tissue specific stem cells as well as bone marrow derived hMSCs within the tumor. The aim of the present work was to study specific cellular interactions between hMSCs and glioma cells in vitro. We show, that glioma cells as well as hMSCs differentially express connexins. and that they interact via gap-junctional coupling. Besides this so-called functional syncytium formation, we also provide evidence of cell fusion events (structural syncytium). These complex cellular interactions led to an enhanced migration and altered proliferation of both, tumor and mesenchymal stem cell types in vitro. The presented work shows that glioma cells display signs of functional as well as structural syncytium formation with hMSCs in vitro. The described cellular phenomena provide new insight into the complexity of interaction patterns between tumor cells and host cells. Based on these findings, further studies are warranted to define the impact of a functional or structural syncytium formation on malignant tumors and cell based therapies in vivo. KW - Mesenchymal stem cell KW - Glioma KW - Syncytium KW - Gap junction KW - Fusion Y1 - 2012 U6 - https://doi.org/10.1016/j.expneurol.2011.12.033 SN - 0014-4886 VL - 234 IS - 1 SP - 208 EP - 219 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Juerchott, Kathrin A1 - Guo, Ke-Tai A1 - Catchpole, Gareth A1 - Feher, Kristen A1 - Willmitzer, Lothar A1 - Schichor, Christian A1 - Selbig, Joachim T1 - Comparison of metabolite profiles in U87 glioma cells and mesenchymal stem cells JF - Biosystems : journal of biological and information processing sciences N2 - Gas chromatography-mass spectrometry (GC-MS) profiles were generated from U87 glioma cells and human mesenchymal stem cells (hMSC). 37 metabolites representing glycolysis intermediates, TCA cycle metabolites, amino acids and lipids were selected for a detailed analysis. The concentrations of these. metabolites were compared and Pearson correlation coefficients were used to calculate the relationship between pairs of metabolites. Metabolite profiles and correlation patterns differ significantly between the two cell lines. These profiles can be considered as a signature of the underlying biochemical system and provide snap-shots of the metabolism in mesenchymal stem cells and tumor cells. KW - Metabolite profiles KW - Correlation networks KW - U87 glioma cells KW - Human mesenchymal stem cells Y1 - 2011 U6 - https://doi.org/10.1016/j.biosystems.2011.05.005 SN - 0303-2647 VL - 105 IS - 2 SP - 130 EP - 139 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Guo, Ke-Tai A1 - Jürchott, Kathrin A1 - Fu, Peng A1 - Selbig, Joachim A1 - Eigenbrod, Sabina A1 - Tonn, Jörg-Christian A1 - Schichor, Christian T1 - Isolation and characterization of bone marrow-derived progenitor cells from malignant gliomas JF - Anticancer research : international journal of cancer research and treatment N2 - Background: Malignant gliomas are highly-vascularised tumours. Neoangiogenesis is a crucial factor in the malignant behaviour of tumour and prognosis of patients. Several mechanisms are suspected to lead to neoangiogenesis, one of them is the recruitment of multipotent progenitor cells towards the tumour. Factors such as Vascular endothelial growth factor-A (VEGF-A) were described to recruit bone marrow-derived endothelial progenitor cells (EPCs) to the glioma stroma and vasculature. Little is known about isolating EPCs from normal or malignant tissues. Materials and Methods: In this study, we addressed the topic of characterization of tumour-isolated EPCs and re-defined the clonal relationship between EPCs and hematopoietic stem cells (HSCs) in gliomas. We first checked public gene expression data of glioma for putative marker expression, pointing towards a prevalence of EPCs and HSCs in glioma. Immunohistochemical staining of glioma tissue confirmed the higher expression of these progenitor markers in glioma tissue. EPCs and HSCs were consequently isolated and characterized at the phenotypic and functional levels. We applied a new isolation method, for the first time, to specimen from patients with high grade glioma including seven grade IV glioblastoma, five-grade III astrocytoma, and three grade III oligoastrocytoma. Results: In all samples, we were able to isolate the tumour-derived EPCs, which were positive for characteristic markers: CD31, CD34 and VEGFR2. The EPCs formed capillary networks in vitro and had the ability to take up acetylated low-density lipoprotein. Glioma-derived HSCs were positive for CD34 and CD45, but they were unable to form a capillary network in vitro. These findings on tumour-derived EPCs/HSCs were in concordance with the results, derived from peripheral blood of healthy volunteers. Conclusion: In our study, we established a new method for EPC/HSC isolation from human gliomas, defined the contribution of EPCs and HSCs to the tumour tissue, and highlighted the intense in vivo tumour host interaction. KW - Glioma KW - endothelial progenitor cell KW - hematopoietic stem cell Y1 - 2012 SN - 0250-7005 VL - 32 IS - 11 SP - 4971 EP - 4982 PB - International Institute of Anticancer Research CY - Athens ER - TY - JOUR A1 - Bordag, Natalie A1 - Klie, Sebastian A1 - Jürchott, Kathrin A1 - Vierheller, Janine A1 - Schiewe, Hajo A1 - Albrecht, Valerie A1 - Tonn, Jörg-Christian A1 - Schwartz, Christoph A1 - Schichor, Christian A1 - Selbig, Joachim T1 - Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects JF - Scientific reports N2 - Glucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (similar to)0.9% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4 mg dexamethasone (+20 mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q < 0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed and deregulated by dexamethasone. The results draw a holistic picture of the severe metabolic deregulation induced by single-dose, short-term glucocorticoid application. The observed metabolic changes suggest a potential for early detection of severe side effects, raising hope for personalized early countermeasures increasing quality of life and reducing health care costs. Y1 - 2015 U6 - https://doi.org/10.1038/srep15954 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Guo, Ke-Tai A1 - Fu, Peng A1 - Juerchott, Kathrin A1 - Motaln, Helena A1 - Selbig, Joachim A1 - Lah, Tamara T. A1 - Tonn, Jörg-Christian A1 - Schichor, Christian T1 - The expression of Wnt-inhibitor DKK1 (Dickkopf 1) is determined by intercellular crosstalk and hypoxia in human malignant gliomas JF - Journal of cancer research and clinical oncology : official organ of the Deutsche Krebsgesellschaft N2 - Objective Wnt signalling pathways regulate proliferation, motility and survival in a variety of human cell types. Dickkopf 1 (DKK1) gene codes for a secreted Wnt inhibitory factor. It functions as tumour suppressor gene in breast cancer and as a pro-apoptotic factor in glioma cells. In this study, we aimed to demonstrate whether the different expression of DKK1 in human glioma-derived cells is dependent on microenvironmental factors like hypoxia and regulated by the intercellular crosstalk with bone-marrow-derived mesenchymal stem cells (bmMSCs). Methods Glioma cell line U87-MG, three cell lines from human glioblastoma grade IV (glioma-derived mesenchymal stem cells) and three bmMSCs were selected for the experiment. The expression of DKK1 in cell lines under normoxic/hypoxic environment or co-culture condition was measured using real-time PCR and enzyme-linked immunoadsorbent assay. The effect of DKK1 on cell migration and proliferation was evaluated by in vitro wound healing assays and sulphorhodamine assays, respectively. Results Glioma-derived cells U87-MG displayed lower DKK1 expression compared with bmMSCs. Hypoxia led to an overexpression of DKK1 in bmMSCs and U87-MG when compared to normoxic environment, whereas co-culture of U87-MG with bmMSCs induced the expression of DKK1 in both cell lines. Exogenous recombinant DKK1 inhibited cell migration on all cell lines, but did not have a significant effect on cell proliferation of bmMSCs and glioma cell lines. Conclusion In this study, we showed for the first time that the expression of DKK1 was hypoxia dependent in human malignant glioma cell lines. The induction of DKK1 by intracellular crosstalk or hypoxia stimuli sheds light on the intense adaption of glial tumour cells to environmental alterations. KW - Dickkopf 1 KW - Intercellular crosstalk KW - Hypoxia KW - Gliomas Y1 - 2014 U6 - https://doi.org/10.1007/s00432-014-1642-2 SN - 0171-5216 SN - 1432-1335 VL - 140 IS - 8 SP - 1261 EP - 1270 PB - Springer CY - New York ER -