TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function JF - BMC sports science, medicine & rehabilitation N2 - Background: In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically -therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Methods: Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results: Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 +/- 8 s) in comparison with PIMA (41 +/- 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion: The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies. KW - Two forms of isometric muscle action KW - Holding isometric muscle action KW - Pushing isometric muscle action KW - Mechanomyography KW - Mechanotendography Y1 - 2017 U6 - https://doi.org/10.1186/s13102-017-0075-z SN - 2052-1847 VL - 9 PB - BioMed Central CY - London ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Are there two forms of isometric muscle action? BT - Results of the experimental study support a distinction between a holding and a pushing isometric muscle function JF - BMC sports science, medicine & rehabilitation N2 - Background In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically – thus resist an impacting force – or push isometrically – therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions – the holding vs. pushing one (HIMA vs PIMA) – can be distinguished by objective parameters. Methods Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8–15 Hz and 10–29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies. KW - Two forms of isometric muscle action KW - Holding isometric muscle action KW - Pushing isometric muscle action KW - Mechanomyography KW - Mechanotendography Y1 - 2017 U6 - https://doi.org/10.1186/s13102-017-0075-z VL - 9 PB - BioMed Central CY - London ER - TY - GEN A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Are there two forms of isometric muscle action? BT - Results of the experimental study support a distinction between a holding and a pushing isometric muscle function N2 - Background In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically – thus resist an impacting force – or push isometrically – therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions – the holding vs. pushing one (HIMA vs PIMA) – can be distinguished by objective parameters. Methods Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8–15 Hz and 10–29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 344 KW - Holding isometric muscle action KW - Mechanomyography KW - Mechanotendography KW - Pushing isometric muscle action KW - Two forms of isometric muscle action Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402084 ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank T1 - Mechanotendography in Achillodynia shows reduced oscillation variability of pre-loaded Achilles tendon BT - a pilot study JF - European Journal of Translational Myology (EJTM) N2 - The present study focuses on an innovative approach in measuring the mechanical oscillations of pre-loaded Achilles tendon by using Mechanotendography (MTG) during application of a short yet powerful mechanical pressure impact. This was applied on the forefoot from the plantar side in direction of dorsiflexion, while the subject stood on the ball of the forefoot on one leg. Participants with Achilles tendinopathy (AT; n = 10) were compared to healthy controls (Con; n = 10). Five trials were performed on each side of the body. For evaluation, two intervals after the impulse began (0-100ms; 30-100ms) were cut from the MTG and pressure raw signals. The intrapersonal variability between the five trials in both intervals were evaluated using the arithmetic mean and coefficient of variation of the mean correlation (Spearman rank correlation) and the normalized averaged mean distances, respectively. The AT-group showed a significantly reduced variability in MTG compared to the Con-group (from p = 0.006 to p = 0.028 for different parameters). The 95% confidence intervals (CI) of MTG results were disjoint, whereas the 95% CIs of the pressure signals were similar (p = 0.192 to p = 0.601). We suggest from this work that the variability of mechanical tendon oscillations could be an indicative parameter of an altered Achilles tendon functionality. KW - Mechanotendography KW - mechanical tendinous oscillations KW - variability KW - impact on pre-activated Achilles tendon Y1 - 2020 U6 - https://doi.org/10.4081/ejtm.2020.8983 SN - 2037-7460 VL - 30 IS - 2 SP - 247 EP - 257 PB - Unipress CY - Padova ER - TY - GEN A1 - Schaefer, Laura V. A1 - Bittmann, Frank T1 - Mechanotendography in Achillodynia shows reduced oscillation variability of pre-loaded Achilles tendon BT - a pilot study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The present study focuses on an innovative approach in measuring the mechanical oscillations of pre-loaded Achilles tendon by using Mechanotendography (MTG) during application of a short yet powerful mechanical pressure impact. This was applied on the forefoot from the plantar side in direction of dorsiflexion, while the subject stood on the ball of the forefoot on one leg. Participants with Achilles tendinopathy (AT; n = 10) were compared to healthy controls (Con; n = 10). Five trials were performed on each side of the body. For evaluation, two intervals after the impulse began (0-100ms; 30-100ms) were cut from the MTG and pressure raw signals. The intrapersonal variability between the five trials in both intervals were evaluated using the arithmetic mean and coefficient of variation of the mean correlation (Spearman rank correlation) and the normalized averaged mean distances, respectively. The AT-group showed a significantly reduced variability in MTG compared to the Con-group (from p = 0.006 to p = 0.028 for different parameters). The 95% confidence intervals (CI) of MTG results were disjoint, whereas the 95% CIs of the pressure signals were similar (p = 0.192 to p = 0.601). We suggest from this work that the variability of mechanical tendon oscillations could be an indicative parameter of an altered Achilles tendon functionality. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 668 KW - Mechanotendography KW - mechanical tendinous oscillations KW - variability KW - impact on pre-activated Achilles tendon Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483499 SN - 1866-8364 IS - 668 ER -