TY - GEN A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Muscular Pre-Activation Can Boost the Maximal Explosive Eccentric Adaptive Force T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The improvement of power is an objective in training of athletes. In order to detect effective methods of exercise, basic research is required regarding the mechanisms of muscular activity. The purpose of this study is to investigate whether or not a muscular pre-activation prior to an external impulse-like force impact has an effect on the maximal explosive eccentric Adaptive Force (xpAFeccmax). This power capability combines different probable power enhancing mechanisms. To measure the xpAFeccmax an innovative pneumatic device was used. During measuring, the subject tries to hold an isometric position as long as possible. In the moment in which the subjects’ maximal isometric holding strength is exceeded, it merges into eccentric muscle action. This process is very close to motions in sports, where an adaptation of the neuromuscular system is required, e.g., force impacts caused by uneven surfaces during skiing. For investigating the effect of pre-activation on the xpAFeccmax of the quadriceps femoris muscle, n = 20 subjects had to pass three different pre-activation levels in a randomized order (level 1: 0.4 bar, level 2: 0.8 bar, level 3: 1.2 bar). After adjusting the standardized pre-pressure by pushing against the interface, an impulse-like load impacted on the distal tibia of the subject. During this, the xpAFeccmax was detected. The maximal voluntary isometric contraction (MVIC) was also measured. The torque values of the xpAFeccmax were compared with regard to the pre-activation levels. The results show a significant positive relation between the pre-activation of the quadriceps femoris muscle and the xpAFeccmax (male: p = 0.000, η2= 0.683; female: p = 0.000, η2= 0.907). The average percentage increase of torque amounted +28.15 ± 25.4% between MVIC and xpAFeccmax with pre-pressure level 1, +12.09 ± 7.9% for the xpAFeccmax comparing pre-pressure levels 1 vs. 2 and +2.98 ± 4.2% comparing levels 2 and 3. A higher but not maximal muscular activation prior to a fast impacting eccentric load seems to produce an immediate increase of force outcome. Different possible physiological explanatory approaches and the use as a potential training method are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 582 KW - Adaptive Force KW - neuromuscular pre-activation KW - power improvement KW - muscular activity KW - adaptation to external force impact Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439189 SN - 1866-8364 IS - 582 ER - TY - GEN A1 - Schaefer, Laura V. A1 - Hoff, Marco A1 - Bittmann, Frank N. T1 - Measuring system and method of determining the Adaptive Force N2 - The term Adaptive Force (AF) describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables – in contrast to the isokinetic systems – a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96). The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000). Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987). The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 346 KW - Adaptive Force KW - isometric eccentric force KW - motor control KW - muscle action KW - strength measurement system Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402676 ER - TY - GEN A1 - Schaefer, Laura V. A1 - Dech, Silas A1 - Wolff, Lara L. A1 - Bittmannn, Frank N. T1 - Emotional Imagery Influences the Adaptive Force in Young Women BT - Unpleasant Imagery Reduces Instantaneously the Muscular Holding Capacity T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The link between emotions and motor function has been known for decades but is still not clarified. The Adaptive Force (AF) describes the neuromuscular capability to adapt to increasing forces and was suggested to be especially vulnerable to interfering inputs. This study investigated the influence of pleasant an unpleasant food imagery on the manually assessed AF of elbow and hip flexors objectified by a handheld device in 12 healthy women. The maximal isometric AF was significantly reduced during unpleasant vs. pleasant imagery and baseline (p < 0.001, dz = 0.98–1.61). During unpleasant imagery, muscle lengthening started at 59.00 ± 22.50% of maximal AF, in contrast to baseline and pleasant imagery, during which the isometric position could be maintained mostly during the entire force increase up to ~97.90 ± 5.00% of maximal AF. Healthy participants showed an immediately impaired holding function triggered by unpleasant imagery, presumably related to negative emotions. Hence, AF seems to be suitable to test instantaneously the effect of emotions on motor function. Since musculoskeletal complaints can result from muscular instability, the findings provide insights into the understanding of the causal chain of linked musculoskeletal pain and mental stress. A case example (current stress vs. positive imagery) suggests that the approach presented in this study might have future implications for psychomotor diagnostics and therapeutics. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 816 KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capability KW - neuromuscular adaptation KW - motor control KW - pleasant and unpleasant imagery KW - emotions KW - emotional imagery KW - manual muscle test Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-582014 SN - 1866-8364 IS - 816 ER -