TY - JOUR A1 - Schaefer, Laura V. A1 - Dech, Silas A1 - Wolff, Lara L. A1 - Bittmannn, Frank N. T1 - Emotional Imagery Influences the Adaptive Force in Young Women BT - Unpleasant Imagery Reduces Instantaneously the Muscular Holding Capacity JF - Brain Sciences N2 - The link between emotions and motor function has been known for decades but is still not clarified. The Adaptive Force (AF) describes the neuromuscular capability to adapt to increasing forces and was suggested to be especially vulnerable to interfering inputs. This study investigated the influence of pleasant an unpleasant food imagery on the manually assessed AF of elbow and hip flexors objectified by a handheld device in 12 healthy women. The maximal isometric AF was significantly reduced during unpleasant vs. pleasant imagery and baseline (p < 0.001, dz = 0.98–1.61). During unpleasant imagery, muscle lengthening started at 59.00 ± 22.50% of maximal AF, in contrast to baseline and pleasant imagery, during which the isometric position could be maintained mostly during the entire force increase up to ~97.90 ± 5.00% of maximal AF. Healthy participants showed an immediately impaired holding function triggered by unpleasant imagery, presumably related to negative emotions. Hence, AF seems to be suitable to test instantaneously the effect of emotions on motor function. Since musculoskeletal complaints can result from muscular instability, the findings provide insights into the understanding of the causal chain of linked musculoskeletal pain and mental stress. A case example (current stress vs. positive imagery) suggests that the approach presented in this study might have future implications for psychomotor diagnostics and therapeutics. KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capability KW - neuromuscular adaptation KW - motor control KW - pleasant and unpleasant imagery KW - emotions KW - emotional imagery KW - manual muscle test Y1 - 2022 U6 - https://doi.org/10.3390/brainsci12101318 SN - 2076-3425 VL - 12 IS - 10 PB - MDPI CY - Basel, Schweiz ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Case Study: Intra- and Interpersonal Coherence of Muscle and Brain Activity of Two Coupled Persons during Pushing and Holding Isometric Muscle Action JF - Brain Sciences N2 - Inter-brain synchronization is primarily investigated during social interactions but had not been examined during coupled muscle action between two persons until now. It was previously shown that mechanical muscle oscillations can develop coherent behavior between two isometrically interacting persons. This case study investigated if inter-brain synchronization appears thereby, and if differences of inter- and intrapersonal muscle and brain coherence exist regarding two different types of isometric muscle action. Electroencephalography (EEG) and mechanomyography/mechanotendography (MMG/MTG) of right elbow extensors were recorded during six fatiguing trials of two coupled isometrically interacting participants (70% MVIC). One partner performed holding and one pushing isometric muscle action (HIMA/PIMA; tasks changed). The wavelet coherence of all signals (EEG, MMG/MTG, force, ACC) were analyzed intra- and interpersonally. The five longest coherence patches in 8–15 Hz and their weighted frequency were compared between real vs. random pairs and between HIMA vs. PIMA. Real vs. random pairs showed significantly higher coherence for intra-muscle, intra-brain, and inter-muscle-brain activity (p < 0.001 to 0.019). Inter-brain coherence was significantly higher for real vs. random pairs for EEG of right and central areas and for sub-regions of EEG left (p = 0.002 to 0.025). Interpersonal muscle-brain synchronization was significantly higher than intrapersonal one, whereby it was significantly higher for HIMA vs. PIMA. These preliminary findings indicate that inter-brain synchronization can arise during muscular interaction. It is hypothesized both partners merge into one oscillating neuromuscular system. The results reinforce the hypothesis that HIMA is characterized by more complex control strategies than PIMA. The pilot study suggests investigating the topic further to verify these results on a larger sample size. Findings could contribute to the basic understanding of motor control and is relevant for functional diagnostics such as the manual muscle test which is applied in several disciplines, e.g., neurology, physiotherapy. KW - interpersonal muscle action KW - wavelet coherence KW - inter-brain synchronization KW - inter-muscle-brain synchronization KW - electroencephalography (EEG) KW - mechanomyography (MMG) KW - holding isometric muscle action (HIMA) KW - pushing isometric muscle action (PIMA) Y1 - 2022 U6 - https://doi.org/10.3390/brainsci12060703 SN - 2076-3425 VL - 12 PB - MDPI Open Access Publishing CY - Basel, Schweiz ET - 6 ER - TY - GEN A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Case Study: Intra- and Interpersonal Coherence of Muscle and Brain Activity of Two Coupled Persons during Pushing and Holding Isometric Muscle Action T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Inter-brain synchronization is primarily investigated during social interactions but had not been examined during coupled muscle action between two persons until now. It was previously shown that mechanical muscle oscillations can develop coherent behavior between two isometrically interacting persons. This case study investigated if inter-brain synchronization appears thereby, and if differences of inter- and intrapersonal muscle and brain coherence exist regarding two different types of isometric muscle action. Electroencephalography (EEG) and mechanomyography/mechanotendography (MMG/MTG) of right elbow extensors were recorded during six fatiguing trials of two coupled isometrically interacting participants (70% MVIC). One partner performed holding and one pushing isometric muscle action (HIMA/PIMA; tasks changed). The wavelet coherence of all signals (EEG, MMG/MTG, force, ACC) were analyzed intra- and interpersonally. The five longest coherence patches in 8–15 Hz and their weighted frequency were compared between real vs. random pairs and between HIMA vs. PIMA. Real vs. random pairs showed significantly higher coherence for intra-muscle, intra-brain, and inter-muscle-brain activity (p < 0.001 to 0.019). Inter-brain coherence was significantly higher for real vs. random pairs for EEG of right and central areas and for sub-regions of EEG left (p = 0.002 to 0.025). Interpersonal muscle-brain synchronization was significantly higher than intrapersonal one, whereby it was significantly higher for HIMA vs. PIMA. These preliminary findings indicate that inter-brain synchronization can arise during muscular interaction. It is hypothesized both partners merge into one oscillating neuromuscular system. The results reinforce the hypothesis that HIMA is characterized by more complex control strategies than PIMA. The pilot study suggests investigating the topic further to verify these results on a larger sample size. Findings could contribute to the basic understanding of motor control and is relevant for functional diagnostics such as the manual muscle test which is applied in several disciplines, e.g., neurology, physiotherapy. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 782 KW - interpersonal muscle action KW - wavelet coherence KW - inter-brain synchronization KW - inter-muscle-brain synchronization KW - electroencephalography (EEG) KW - mechanomyography (MMG) KW - holding isometric muscle action (HIMA) KW - pushing isometric muscle action (PIMA) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561942 SN - 1866-8364 SP - 1 EP - 27 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Schaefer, Laura V. A1 - Dech, Silas A1 - Wolff, Lara L. A1 - Bittmannn, Frank N. T1 - Emotional Imagery Influences the Adaptive Force in Young Women BT - Unpleasant Imagery Reduces Instantaneously the Muscular Holding Capacity T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The link between emotions and motor function has been known for decades but is still not clarified. The Adaptive Force (AF) describes the neuromuscular capability to adapt to increasing forces and was suggested to be especially vulnerable to interfering inputs. This study investigated the influence of pleasant an unpleasant food imagery on the manually assessed AF of elbow and hip flexors objectified by a handheld device in 12 healthy women. The maximal isometric AF was significantly reduced during unpleasant vs. pleasant imagery and baseline (p < 0.001, dz = 0.98–1.61). During unpleasant imagery, muscle lengthening started at 59.00 ± 22.50% of maximal AF, in contrast to baseline and pleasant imagery, during which the isometric position could be maintained mostly during the entire force increase up to ~97.90 ± 5.00% of maximal AF. Healthy participants showed an immediately impaired holding function triggered by unpleasant imagery, presumably related to negative emotions. Hence, AF seems to be suitable to test instantaneously the effect of emotions on motor function. Since musculoskeletal complaints can result from muscular instability, the findings provide insights into the understanding of the causal chain of linked musculoskeletal pain and mental stress. A case example (current stress vs. positive imagery) suggests that the approach presented in this study might have future implications for psychomotor diagnostics and therapeutics. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 816 KW - Adaptive Force KW - maximal isometric Adaptive Force KW - holding capability KW - neuromuscular adaptation KW - motor control KW - pleasant and unpleasant imagery KW - emotions KW - emotional imagery KW - manual muscle test Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-582014 SN - 1866-8364 IS - 816 ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Paired personal interaction reveals objective differences between pushing and holding isometric muscle action JF - PLOS One N2 - In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. KW - neural-control KW - task failure KW - lengthening contractions KW - force KW - oscillations KW - load KW - time KW - synchronization KW - activation KW - principles Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0238331 SN - 1932-6203 VL - 16 IS - 5 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Dech, Silas A1 - Bittmann, Frank A1 - Schaefer, Laura V. T1 - Assessment of the adaptive force of Elbow extensors in healthy subjects quantified by a novel pneumatically driven measurement system with considerations of its quality criteria JF - Diagnostics : open access journal N2 - Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31–1.98 Nm (0.61%–5.47%, p = 0.175–0.552), the standard errors of measurements (SEM) were 1.29–5.68 Nm (2.53%–15.70%) and the ICCs(3,1) = 0.896–0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85–0.98). The M and Max of AFisomax were significantly lower (6.12–14.93 Nm; p ≤ 0.001–0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function. KW - adaptive force KW - sensorimotor control KW - isometric muscle action KW - eccentric muscle action KW - maximal voluntary contraction KW - adaptive holding capacity KW - reliability KW - validity KW - neuromuscular functionality Y1 - 2021 U6 - https://doi.org/10.3390/diagnostics11060923 SN - 2075-4418 VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Löffler, Nils A1 - Klein, Julia A1 - Bittmann, Frank T1 - Mechanomyography and acceleration show interlimb asymmetries in Parkinson patients without tremor compared to controls during a unilateral motor task JF - Scientific reports N2 - The mechanical muscular oscillations are rarely the objective of investigations regarding the identification of a biomarker for Parkinson's disease (PD). Therefore, the aim of this study was to investigate whether or not this specific motor output differs between PD patients and controls. The novelty is that patients without tremor are investigated performing a unilateral isometric motor task. The force of armflexors and the forearm acceleration (ACC) were recorded as well as the mechanomyography of the biceps brachii (MMGbi), brachioradialis (MMGbra) and pectoralis major (MMGpect) muscles using a piezoelectric-sensor-based system during a unilateral motor task at 70% of the MVIC. The frequency, a power-frequency-ratio, the amplitude variation, the slope of amplitudes and their interlimb asymmetries were analysed. The results indicate that the oscillatory behavior of muscular output in PD without tremor deviates from controls in some parameters: Significant differences appeared for the power-frequency-ratio (p=0.001, r=0.43) and for the amplitude variation (p=0.003, r=0.34) of MMGpect. The interlimb asymmetries differed significantly concerning the power-frequency-ratio of MMGbi (p=0.013, r=0.42) and MMGbra (p=0.048, r=0.39) as well as regarding the mean frequency (p=0.004, r=0.48) and amplitude variation of MMGpect (p=0.033, r=0.37). The mean (M) and variation coefficient (CV) of slope of ACC differed significantly (M: p=0.022, r=0.33; CV: p=0.004, r=0.43). All other parameters showed no significant differences between PD and controls. It remains open, if this altered mechanical muscular output is reproducible and specific for PD. KW - Diseases KW - Neurology KW - Neuroscience Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-81672-z SN - 2045-2322 VL - 11 IS - 1 PB - Macmillan CY - London ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Löffler, Nils A1 - Klein, Julia A1 - Bittmann, Frank N. T1 - Mechanomyography and acceleration show interlimb asymmetries in Parkinson patients without tremor compared to controls during a unilateral motor task JF - Scientific Reports N2 - The mechanical muscular oscillations are rarely the objective of investigations regarding the identification of a biomarker for Parkinson’s disease (PD). Therefore, the aim of this study was to investigate whether or not this specific motor output differs between PD patients and controls. The novelty is that patients without tremor are investigated performing a unilateral isometric motor task. The force of armflexors and the forearm acceleration (ACC) were recorded as well as the mechanomyography of the biceps brachii (MMGbi), brachioradialis (MMGbra) and pectoralis major (MMGpect) muscles using a piezoelectric-sensor-based system during a unilateral motor task at 70% of the MVIC. The frequency, a power-frequency-ratio, the amplitude variation, the slope of amplitudes and their interlimb asymmetries were analysed. The results indicate that the oscillatory behavior of muscular output in PD without tremor deviates from controls in some parameters: Significant differences appeared for the power-frequency-ratio (p = 0.001, r = 0.43) and for the amplitude variation (p = 0.003, r = 0.34) of MMGpect. The interlimb asymmetries differed significantly concerning the power-frequency-ratio of MMGbi (p = 0.013, r = 0.42) and MMGbra (p = 0.048, r = 0.39) as well as regarding the mean frequency (p = 0.004, r = 0.48) and amplitude variation of MMGpect (p = 0.033, r = 0.37). The mean (M) and variation coefficient (CV) of slope of ACC differed significantly (M: p = 0.022, r = 0.33; CV: p = 0.004, r = 0.43). All other parameters showed no significant differences between PD and controls. It remains open, if this altered mechanical muscular output is reproducible and specific for PD. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-021-81672-z SN - 2045-2322 VL - 11 PB - Springer Nature CY - Berlin ER - TY - THES A1 - Schaefer, Laura V. T1 - Oszillation und Adaptation als Mechanismen neuromuskulärer Steuer- und Regelprozesse Y1 - 2021 ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Mechanotendography BT - description and evaluation of a novel method for investigating the physiological mechanical oscillations of tendons using a piezo-based measurement system JF - European journal of translational myology : European journal ; basic applied myology ; BAM online ; myology reviews N2 - The mechanotendography (MTG) is a method for analyzing the mechanical oscillations of tendons during muscular actions. The aim of this investigation was to evaluate the technical reliability of a piezo-based measurement system used for MTG. The reliability measurements were performed by using audio samples played by a subwoofer. The thereby generated pressure waves were recorded by a piezo-based measurement system. An audio of 40 Hz sine oscillations and four different formerly in vivo recorded MTG-signals were converted into audio files and were used as test signals. Five trials with each audio were performed and one audio was used for repetition trials on another day. The signals’ correlation was estimated by Spearman (MCC) and intraclass correlation coefficients (ICC(3,1)), Cronbach’s alpha (CA) and by mean distances (MD). All parameters were compared between repetition and randomized matched signals. The repetition trials show high correlations (MCC: 0.86 ± 0.13, ICC: 0.89 ± 0.12, CA: 0.98 ± 0.03), low MD (0.03 ± 0.03V) and differ significantly from the randomized matched signals (MCC: 0.15 ± 0.10, ICC: 0.17 ± 0.09, CA: 0.37 ± 0.16, MD: 0.19 ± 0.01V) (p = 0.001 – 0.043). This speaks for an excellent reliability of the measurement system. Presuming the skin above superficial tendons oscillates adequately, we estimate this tool as valid for the application in musculoskeletal system. KW - mechanotendography KW - tendons KW - mechanical tendinous oscillations KW - piezo-based measurement system Y1 - 2021 U6 - https://doi.org/10.4081/ejtm.2021.9553 SN - 2037-7460 IS - 31 PB - Unipress CY - Padova, Italien ER - TY - GEN A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Paired personal interaction reveals objective differences between pushing and holding isometric muscle action T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 714 KW - neural-control KW - task failure KW - lengthening contractions KW - force KW - oscillations KW - load KW - time KW - synchronization KW - activation KW - principles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519119 SN - 1866-8364 IS - 714 ER - TY - GEN A1 - Schaefer, Laura V. A1 - Löffler, Nils A1 - Klein, Julia A1 - Bittmann, Frank N. T1 - Mechanomyography and acceleration show interlimb asymmetries in Parkinson patients without tremor compared to controls during a unilateral motor task T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The mechanical muscular oscillations are rarely the objective of investigations regarding the identification of a biomarker for Parkinson’s disease (PD). Therefore, the aim of this study was to investigate whether or not this specific motor output differs between PD patients and controls. The novelty is that patients without tremor are investigated performing a unilateral isometric motor task. The force of armflexors and the forearm acceleration (ACC) were recorded as well as the mechanomyography of the biceps brachii (MMGbi), brachioradialis (MMGbra) and pectoralis major (MMGpect) muscles using a piezoelectric-sensor-based system during a unilateral motor task at 70% of the MVIC. The frequency, a power-frequency-ratio, the amplitude variation, the slope of amplitudes and their interlimb asymmetries were analysed. The results indicate that the oscillatory behavior of muscular output in PD without tremor deviates from controls in some parameters: Significant differences appeared for the power-frequency-ratio (p = 0.001, r = 0.43) and for the amplitude variation (p = 0.003, r = 0.34) of MMGpect. The interlimb asymmetries differed significantly concerning the power-frequency-ratio of MMGbi (p = 0.013, r = 0.42) and MMGbra (p = 0.048, r = 0.39) as well as regarding the mean frequency (p = 0.004, r = 0.48) and amplitude variation of MMGpect (p = 0.033, r = 0.37). The mean (M) and variation coefficient (CV) of slope of ACC differed significantly (M: p = 0.022, r = 0.33; CV: p = 0.004, r = 0.43). All other parameters showed no significant differences between PD and controls. It remains open, if this altered mechanical muscular output is reproducible and specific for PD. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 720 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523049 SN - 1866-8364 ER - TY - GEN A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Mechanotendography: description and evaluation of a novel method for investigating the physiological mechanical oscillations of tendons using a piezo-based measurement system T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The mechanotendography (MTG) is a method for analyzing the mechanical oscillations of tendons during muscular actions. The aim of this investigation was to evaluate the technical reliability of a piezo-based measurement system used for MTG. The reliability measurements were performed by using audio samples played by a subwoofer. The thereby generated pressure waves were recorded by a piezo-based measurement system. An audio of 40 Hz sine oscillations and four different formerly in vivo recorded MTG-signals were converted into audio files and were used as test signals. Five trials with each audio were performed and one audio was used for repetition trials on another day. The signals’ correlation was estimated by Spearman (MCC) and intraclass correlation coefficients (ICC(3,1)), Cronbach’s alpha (CA) and by mean distances (MD). All parameters were compared between repetition and randomized matched signals. The repetition trials show high correlations (MCC: 0.86 ± 0.13, ICC: 0.89 ± 0.12, CA: 0.98 ± 0.03), low MD (0.03 ± 0.03V) and differ significantly from the randomized matched signals (MCC: 0.15 ± 0.10, ICC: 0.17 ± 0.09, CA: 0.37 ± 0.16, MD: 0.19 ± 0.01V) (p = 0.001 – 0.043). This speaks for an excellent reliability of the measurement system. Presuming the skin above superficial tendons oscillates adequately, we estimate this tool as valid for the application in musculoskeletal system. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 737 KW - mechanotendography KW - tendons KW - mechanical tendinous oscillations KW - piezo-based measurement system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-536500 SN - 1866-8364 IS - 737 SP - 1 EP - 10 PB - Universität Potsdam CY - Potsdam ER - TY - JOUR A1 - Bittmann, Frank N. A1 - Dech, Silas A1 - Aehle, Markus A1 - Schaefer, Laura V. T1 - Manual Muscle Testing—Force Profiles and Their Reproducibility JF - Diagnostics N2 - The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a “break test” depends on the tester’s force rise and the patient’s ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers’ force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient’s reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given. KW - manual muscle testing KW - neuromuscular diagnostics KW - force profiles KW - reproducibility KW - adaptive force KW - handheld device Y1 - 2020 U6 - https://doi.org/10.3390/diagnostics10120996 SN - 2075-4418 VL - 10 IS - 12 PB - MDPI CY - Basel ER - TY - GEN A1 - Bittmann, Frank N. A1 - Dech, Silas A1 - Aehle, Markus A1 - Schaefer, Laura V. T1 - Manual Muscle Testing—Force Profiles and Their Reproducibility T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a “break test” depends on the tester’s force rise and the patient’s ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers’ force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient’s reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 671 KW - manual muscle testing KW - neuromuscular diagnostics KW - force profiles KW - reproducibility KW - adaptive force KW - handheld device Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-485612 SN - 1866-8364 IS - 671 ER - TY - JOUR A1 - Schaefer, Laura V. A1 - Bittmann, Frank N. T1 - Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function JF - BMC sports science, medicine & rehabilitation N2 - Background: In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically -therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Methods: Ten subjects performed two different measuring modes at 80% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results: Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 +/- 8 s) in comparison with PIMA (41 +/- 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4% of the overall duration time of isometric measuring, during HIMA it lasted 31.6% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion: The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies. KW - Two forms of isometric muscle action KW - Holding isometric muscle action KW - Pushing isometric muscle action KW - Mechanomyography KW - Mechanotendography Y1 - 2017 U6 - https://doi.org/10.1186/s13102-017-0075-z SN - 2052-1847 VL - 9 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hoff, Marko A1 - Schaefer, Laura V. A1 - Heinke, Nancy A1 - Bittmann, Frank N. T1 - Report on adaptive force, a specific neuromuscular function JF - European journal of translational myology KW - Adaptive Force KW - isometric-eccentric force KW - muscle action KW - pneumatic force measuring system Y1 - 2015 U6 - https://doi.org/10.4081/ejtm.2015.5183 SN - 2037-7452 SN - 2037-7460 VL - 25 IS - 3 SP - 183 EP - 189 PB - PAGEPress CY - Pavia ER - TY - THES A1 - Schaefer, Laura V. T1 - Synchronisationsphänomene myotendinöser Oszillationen interagierender neuromuskulärer Systeme T1 - Synchronization phenomena of myotendinal oscillations during interaction of neuromuscular systems BT - mit Betrachtung einer Hypothese bezüglich unterschiedlicher Qualitäten isometrischer Muskelaktion BT - considering a hypothesis regarding different qualities of isometric muscle action N2 - Muskeln oszillieren nachgewiesener Weise mit einer Frequenz um 10 Hz. Doch was geschieht mit myofaszialen Oszillationen, wenn zwei neuromuskuläre Systeme interagieren? Die Dissertation widmet sich dieser Fragestellung bei isometrischer Interaktion. Während der Testmessungen ergaben sich Hinweise für das Vorhandensein von möglicherweise zwei verschiedenen Formen der Isometrie. Arbeiten zwei Personen isometrisch gegeneinander, können subjektiv zwei Modi eingenommen werden: man kann entweder isometrisch halten – der Kraft des Partners widerstehen – oder isometrisch drücken – gegen den isometrischen Widerstand des Partners arbeiten. Daher wurde zusätzlich zu den Messungen zur Interaktion zweier Personen an einzelnen Individuen geprüft, ob möglicherweise zwei Formen der Isometrie existieren. Die Promotion besteht demnach aus zwei inhaltlich und methodisch getrennten Teilen: I „Single-Isometrie“ und II „Paar-Isometrie“. Für Teil I wurden mithilfe eines pneumatisch betriebenen Systems die hypothetischen Messmodi Halten und Drücken während isometrischer Aktion untersucht. Bei n = 10 Probanden erfolgte parallel zur Aufzeichnung des Drucksignals während der Messungen die Erfassung der Kraft (DMS) und der Beschleunigung sowie die Aufnahme der mechanischen Muskeloszillationen folgender myotendinöser Strukturen via Mechanomyo- (MMG) bzw. Mechanotendografie (MTG): M. triceps brachii (MMGtri), Trizepssehne (MTGtri), M. obliquus externus abdominis (MMGobl). Pro Proband wurden bei 80 % der MVC sowohl sechs 15-Sekunden-Messungen (jeweils drei im haltenden bzw. drückenden Modus; Pause: 1 Minute) als auch vier Ermüdungsmessungen (jeweils zwei im haltenden bzw. drückenden Modus; Pause: 2 Minuten) durchgeführt. Zum Vergleich der Messmodi Halten und Drücken wurden die Amplituden der myofaszialen Oszillationen sowie die Kraftausdauer herangezogen. Signifikante Unterschiede zwischen dem haltenden und dem drückenden Modus zeigten sich insbesondere im Bereich der Ermüdungscharakteristik. So lassen Probanden im haltenden Modus signifikant früher nach als im drückenden Modus (t(9) = 3,716; p = .005). Im drückenden Modus macht das längste isometrische Plateau durchschnittlich 59,4 % der Gesamtdauer aus, im haltenden sind es 31,6 % (t(19) = 5,265, p = .000). Die Amplituden der Single-Isometrie-Messungen unterscheiden sich nicht signifikant. Allerdings variieren die Amplituden des MMGobl zwischen den Messungen im drückenden Modus signifikant stärker als im haltenden Modus. Aufgrund dieser teils signifikanten Unterschiede zwischen den beiden Messmodi wurde dieses Setting auch im zweiten Teil „Paar-Isometrie“ berücksichtigt. Dort wurden n = 20 Probanden – eingeteilt in zehn gleichgeschlechtliche Paare – während isometrischer Interaktion untersucht. Die Sensorplatzierung erfolgte analog zu Teil I. Die Oszillationen der erfassten MTG- sowie MMG-Signale wurden u.a. mit Algorithmen der Nichtlinearen Dynamik auf ihre Kohärenz hin untersucht. Durch die Paar-Isometrie-Messungen zeigte sich, dass die Muskeln und die Sehnen beider neuromuskulärer Systeme bei Interaktion im bekannten Frequenzbereich von 10 Hz oszillieren. Außerdem waren sie in der Lage, sich bei Interaktion so aufeinander abzustimmen, dass sich eine signifikante Kohärenz entwickelte, die sich von Zufallspaarungen signifikant unterscheidet (Patchanzahl: t(29) = 3,477; p = .002; Summe der 4 längsten Patches: t(29) = 7,505; p = .000). Es wird der Schluss gezogen, dass neuromuskuläre Komplementärpartner in der Lage sind, sich im Sinne kohärenten Verhaltens zu synchronisieren. Bezüglich der Parameter zur Untersuchung der möglicherweise vorhandenen zwei Formen der Isometrie zeigte sich bei den Paar-Isometrie-Messungen zwischen Halten und Drücken ein signifikanter Unterschied bei der Ermüdungscharakteristik sowie bezüglich der Amplitude der MMGobl. Die Ergebnisse beider Teilstudien bestärken die Hypothese, dass zwei Formen der Isometrie existieren. Fraglich ist, ob man überhaupt von Isometrie sprechen kann, da jede isometrische Muskelaktion aus feinen Oszillationen besteht, die eine per Definition postulierte Isometrie ausschließen. Es wird der Vorschlag unterbreitet, die Isometrie durch den Begriff der Homöometrie auszutauschen. Die Ergebnisse der Paar-Isometrie-Messungen zeigen u.a., dass neuromuskuläre Systeme in der Lage sind, ihre myotendinösen Oszillationen so aufeinander abzustimmen, dass kohärentes Verhalten entsteht. Es wird angenommen, dass hierzu beide neuromuskulären Systeme funktionell intakt sein müssen. Das Verfahren könnte für die Diagnostik funktioneller Störungen relevant werden. N2 - Muscles oscillate with a frequency of about 10 Hz. But what happens with myofascial oscillations if two neuromuscular systems interact? The dissertation is devoted to this question during isometric interaction. The test measurements provide hints for the presence of possibly two different forms of isometric muscle action. When two persons work against each other, each individual can subjectively choose to take up one of two modes: one can either hold isometrically – thus resist the force of the partner – or one can push isometrically – and therefore work against the resistance of the partner. In addition to the measurements to determine the interaction of neuromuscular systems, measurements with single individuals were done to evaluate the question, if probably two forms of isometric muscle action exist. The doctoral thesis consists of two separate parts concerning the content and methodology: I “Single Isometric” and II “Coupled Isometric”. For part I the hypothetical measurement modes - “holding” and “pushing” during isometric muscle action - were examined using a pneumatic system. During the measurements of n = 10 subjects the signal of pressure, force (strain gauge) and acceleration were recorded. Furthermore, the detection of the mechanic muscle oscillations of the following myotendinal structures occurred via Mechanomyo- (MMG) and Mechanotendography (MTG), respectively: triceps brachii muscle (MMGtri), tendon of triceps brachii muscle (MTGtri) and obliquus externus abdominis muscle (MMGobl). Each test person performed at 80 % of MVC six 15-seconds-measurements (three at holding and three at pushing mode, respectively; break: 1 min.) as well as four fatigue measurements (two at holding and two at pushing mode, respectively; break: 2 min.). In order to compare the two measurement modes holding and pushing, the amplitude of the myofascial oscillations as well as the force endurance were used. Significant differences between the holding and the pushing mode appeared especially when looking at the characteristics of fatigue. Subjects in the holding mode yielded earlier than during the pushing one (t(9) = 3.716; p = .005). In the pushing mode the longest isometric plateau amounts 59.4 % of the overall duration of the measurement. During holding it lasted 31.6 % (t(19) = 5.265, p = .000). The amplitudes of the single-isometric-measurements did not differ significantly. But the amplitude of the MMGobl varied significantly stronger during the pushing mode comparing to the holding one. Due to these partly significant differences between both measurement modes, this setting was considered for the second part „Coupled-Isometric“, too. For the coupled-isometric-measurements n = 20 subjects – divided into same-sex couples – were investigated during isometric interaction. The placement of the sensors is analogous to part I. The oscillations of the recorded MMG- and MTG-signals were analyzed regarding their coherence inter alia by algorithms of non-linear dynamics. Through the coupled-isometric-measurements it was shown, that also during isometric interaction the muscles and the tendons of both neuromuscular systems oscillate at the known frequency range of 10 Hz. Moreover, the systems are able to coordinate them in such a manner, that a significant coherence appears. This differed significantly from random pairings (number of patches: t(29) = 3.477; p = .002; Sum of 4 longest patches: t(29) = 7.505; p = .000). Thus it is concluded that neuromuscular complementary partners are able to synchronize themselves in the sense of coherent behavior. Regarding the parameters concerning the possibly existing forms of isometric muscle action, a significant difference at the coupled-isometric-measurements between holding and pushing appeared with respect to the characteristics of fatigue as well as the amplitudes of the MMGobl. The results of both sub studies strengthen the hypothesis that two forms of isometric muscle action exist. It is questionable whether one can talk of isometry at all, since each isometric muscle action consists of fine oscillations. This excludes a by definition postulated isometry. It is proposed to exchange this term with homeometry. The results of the coupled-isometric-measurements show inter alia, that neuromuscular systems are able to coordinate their myotendinal oscillations, so that coherent behavior arises. It is supposed that for this both systems have to be functionally intact. This procedure could become relevant for diagnostics of functional disorders. KW - Mechanomyografie KW - myofasziale Oszillationen KW - Isometrie KW - Interaktion KW - Synchronisation KW - mechanomyography KW - myofascial oscillations KW - isometric muscle action KW - interaction KW - synchronization Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72445 ER -