TY - JOUR A1 - Bekir, Marek A1 - Jelken, Joachim A1 - Jung, Se-Hyeong A1 - Pich, Andrij A1 - Pacholski, Claudia A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Dual responsiveness of microgels induced by single light stimulus JF - Applied physics letters N2 - We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented. Y1 - 2021 U6 - https://doi.org/10.1063/5.0036376 SN - 0003-6951 SN - 1077-3118 VL - 118 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Kopyshev, Alexey A1 - Lomadze, Nino A1 - Morozova, Elena A1 - Lysyakova, Liudmila A1 - Kasyanenko, Nina A1 - Santer, Svetlana T1 - DNA compaction by azobenzene-containing surfactant JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevE.84.021909 SN - 1539-3755 VL - 84 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - König, Tobias A1 - Papke, Thomas A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Atomic force microscopy nanolithography fabrication of metallic nano-slits using silicon nitride tips JF - Journal of materials science N2 - In this paper, we report on the properties of nano-slits created in metal thin films using atomic force microscope (AFM) nanolithography (AFM-NL). We demonstrate that instead of expensive diamond AFM tips, it is also possible to use low cost silicon nitride tips. It is shown that depending on the direction of scratching, nano-slits of different widths and depths can be fabricated at constant load force. We elucidate the reasons for this behavior and identify an optimal direction and load force for scratching a gold layer. Y1 - 2013 U6 - https://doi.org/10.1007/s10853-013-7188-x SN - 0022-2461 VL - 48 IS - 10 SP - 3863 EP - 3869 PB - Springer CY - New York ER -