TY - JOUR A1 - Hoffmann, Bernd A1 - Kahmen, Ansgar A1 - Cernusak, Lucas A. A1 - Arndt, Stefan K. A1 - Sachse, Dirk T1 - Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia JF - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - Environmental parameters such as rainfall, temperature and relative humidity can affect the composition of higher plant leaf wax. The abundance and distribution of leaf wax biomarkers, such as long chain n-alkanes, in sedimentary archives have therefore been proposed as proxies reflecting climate change. However, a robust palaeoclimatic interpretation requires a thorough understanding of how environmental changes affect leaf wax n-alkane distributions in living plants. We have analysed the concentration and chain length distribution of leaf wax n-alkanes in Acacia and Eucalyptus species along a 1500 km climatic gradient in northern Australia that ranges from subtropical to arid. We show that aridity affected the concentration and distribution of n-alkanes for plants in both genera. For both Acacia and Eucalyptus n-alkane concentration increased by a factor of ten to the dry centre of Australia, reflecting the purpose of the wax in preventing water loss from the leaf. Furthermore, Acacian-alkanes decreased in average chain length (ACL) towards the arid centre of Australia, whereas Eucalyptus ACL increased under arid conditions. Our observations demonstrate that n-alkane concentration and distribution in leaf wax are sensitive to hydroclimatic conditions. These parameters could therefore potentially be employed in palaeorecords to estimate past environmental change. However, our finding of a distinct response of n-alkane ACL values to hydrological changes in different taxa also implies that the often assumed increase in ACL under drier conditions is not a robust feature for all plant species and genera and as such additional information about the prevalent vegetation are required when ACL values are used as a palaeoclimate proxy. Y1 - 2013 U6 - https://doi.org/10.1016/j.orggeochem.2013.07.003 SN - 0146-6380 VL - 62 IS - 9 SP - 62 EP - 67 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Romero-Viana, Lidia A1 - Kienel, Ulrike A1 - Wilkes, Heinz A1 - Sachse, Dirk T1 - Growth-dependent hydrogen isotopic fractionation of algal lipid biomarkers in hypersaline Isabel Lake (Mexico) JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - In this study, we evaluated the potential of the hydrogen isotopic composition of algal lipid biomarkers as a proxy for past hydroclimatic variability in hypersaline Isabel Lake, Mexico (Eastern Pacific). We compared rainfall variability recorded in the region over the last 65 years with changes in delta D values of the most abundant compounds preserved in the uppermost 16 cm of lake sediment. Changes in delta D values of the 1,15-C-32 diol (delta D-diol), a specific biomarker of algal populations, were related to rainfall variability; specifically, n-alkyl diols were more deuterium-enriched (depleted) during wetter (drier) periods. Strikingly, neither the magnitude of lipid biomarker isotopic changes over interannual timescales (of up to 70-80 parts per thousand) nor the direction of that variability can be explained by changes in delta D values of the water source or salinity fluctuations (approximately 30 on the practical salinity scale) controlled by seasonal rainfall. However, changes in sedimentary biomarker composition, higher total organic carbon content and less negative delta C-13 values of the 1,15-C-32 diol indicate enhanced algal growth during wetter periods. We find that these conditions result in less negative delta D values of n-alkyl diols. We hypothesize that due to higher lipid demand during enhanced algal growth, an increasing proportion of hydrogen for lipid synthesis is derived from the cytosol via oxidation of polysaccharides, which may cause a deuterium enrichment of the acetogenic compounds. This study has significant implications for paleohydrological reconstructions using algal lipid delta D values, particularly in highly seasonal environments such as Isabel Lake. In such environments, delta D values of specific algal lipid biomarkers may not record the full seasonal cycle in source water delta D but appear to be mainly controlled by the physiological state of algal populations. Our data provide the first evidence that changes in D/H fractionation due to algal growth conditions can be recorded in sediments. For paleoclimate reconstructions in such environments, algal growth conditions should be constrained with additional proxy data (delta C-13 values of the same biomarkers), as the net D/H fractionation between water and lipids may not have been constant over time. Y1 - 2013 U6 - https://doi.org/10.1016/j.gca.2012.12.017 SN - 0016-7037 VL - 106 IS - 4 SP - 490 EP - 500 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kahmen, Ansgar A1 - Schefuss, Enno A1 - Sachse, Dirk T1 - Leaf water deuterium enrichment shapes leaf wax n-alkane delta D values of angiosperm plants I experimental evidence and mechanistic insights JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Leaf wax n-alkanes of terrestrial plants are long-chain hydrocarbons that can persist in sedimentary records over geologic timescales. Since meteoric water is the primary source of hydrogen used in leaf wax synthesis, the hydrogen isotope composition (delta D value) of these biomarkers contains information on hydrological processes. Consequently, leaf wax n-alkane delta D values have been advocated as powerful tools for paleohydrological research. The exact kind of hydrological information that is recorded in leaf wax n-alkanes remains, however, unclear because critical processes that determine their delta D values have not yet been resolved. In particular the effects of evaporative deuterium (D)-enrichment of leaf water on the delta D values of leaf wax n-alkanes have not yet been directly assessed and quantified. Here we present the results of a study where we experimentally tested if and by what magnitude evaporative D-enrichment of leaf water affects the delta D of leaf wax n-alkanes in angiosperm C3 and C4 plants. Our study revealed that n-alkane delta D values of all plants that we investigated were affected by evaporative D-enrichment of leaf water. For dicotyledonous plants we found that the full extent of leaf water evaporative D-enrichment is recorded in leaf wax n-alkane delta D values. For monocotyledonous plants we found that between 18% and 68% of the D-enrichment in leaf water was recorded in the delta D values of their n-alkanes. We hypothesize that the different magnitudes by which evaporative D-enrichment of leaf water affects the delta D values of leaf wax n-alkanes in monocotyledonous and dicotyledonous plants is the result of differences in leaf growth and development between these plant groups. Our finding that the evaporative D-enrichment of leaf water affects the delta D values of leaf wax n-alkanes in monocotyledonous and dicotyledonous plants albeit at different magnitudes - has important implications for the interpretation of leaf wax n-alkane delta D values from paleohydrological records. In addition, our finding opens the door to employ delta D values of leaf wax n-alkanes as new ecohydrological proxies for evapotranspiration that can be applied in contemporary plant and ecosystem research. Y1 - 2013 U6 - https://doi.org/10.1016/j.gca.2012.09.003 SN - 0016-7037 VL - 111 SP - 39 EP - 49 PB - Elsevier CY - Oxford ER -