TY - JOUR A1 - Fischer, Eric Wolfgang A1 - Anders, Janet A1 - Saalfrank, Peter T1 - Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrodinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency omega(c) is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well. Y1 - 2022 U6 - https://doi.org/10.1063/5.0076434 SN - 0021-9606 SN - 1089-7690 VL - 156 IS - 15 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Scholz, Robert A1 - Floss, Gereon A1 - Saalfrank, Peter A1 - Füchsel, Gernot A1 - Loncaric, Ivor A1 - Juaristi, J. I. T1 - Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion JF - Physical review : B, Condensed matter and materials physics N2 - A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 x 2): CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevB.94.165447 SN - 2469-9950 SN - 2469-9969 VL - 94 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kulesza, Alexander Jan A1 - Titov, Evgenii A1 - Daly, Steven A1 - Wlodarczyk, Radoslaw A1 - Megow, Jörg A1 - Saalfrank, Peter A1 - Choi, Chang Min A1 - MacAleese, Luke A1 - Antoine, Rodolphe A1 - Dugourd, Philippe T1 - Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano-and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues. KW - density functional calculations KW - CC2 calculations KW - multiphoton processes KW - photofragmentation KW - xanthenes Y1 - 2016 U6 - https://doi.org/10.1002/cphc.201600650 SN - 1439-4235 SN - 1439-7641 VL - 17 SP - 3129 EP - 3138 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Boese, Adrian Daniel A1 - Saalfrank, Peter T1 - CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - In this work, we study the adsorption of CO from low to high coverage at a defect-free NaCl(100) surface by means of duster and periodic models, using highly accurate wave function-based QM:QM embedding as well as density functional theory. At low coverages, the most accurate methods predict a zero-point-corrected adsorption energy of around 13 kJ/mol, and the CO molecules are found to be oriented perpendicular to the surface. At higher coverages, lower-energy phases with nonparallel/upright, tilted orientations emerge. Besides the well-known p(2 x 1)/antiparallel phase (T/A), we find other tilted phases (tilted/irregular, T/I; tilted/spiral, T/S) as local minima. Vibrational frequencies for CO adsorbed on NaCl(100) and Davydov splittings of the C-O stretch vibration are also determined. The IR spectra are characteristic fingerprints for the relative orientation of CO molecules and may therefore be used as sensitive probes to distinguish parallel/upright from various tilted adsorption phases. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b03726 SN - 1932-7447 VL - 120 SP - 12637 EP - 12653 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Goetze, Jan Philipp A1 - Persico, Maurizio A1 - Saalfrank, Peter T1 - Dynamics of Azobenzene Dimer Photoisomerization: Electronic and Steric Effects JF - The journal of physical chemistry letters N2 - While azobenzenes readily photoswitch in solution, their photoisomerization in densely packed self-assembled monolayers (SAMs) can be suppressed. Reasons for this can be steric hindrance and/or electronic quenching, e.g., by exciton coupling. We address these possibilities by means of nonadiabatic molecular dynamics with trajectory surface hopping calculations, investigating the trans -> cis isomerization of azobenzene after excitation into the pi pi* absorption band. We consider a free monomer, an isolated dimer and a dimer embedded in a SAM-like environment of additional azobenzene molecules, imitating in this way the gradual transition from an unconstrained over an electronically coupled to an electronically coupled and sterically hindered, molecular switch. Our simulations reveal that in comparison to the single molecule the quantum yield of the trans -> cis photoisomerization is similar for the isolated dimer, but greatly reduced in the sterically constrained situation. Other implications of dimerization and steric constraints are also discussed. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpciett.6b01401 SN - 1948-7185 VL - 7 SP - 3591 EP - 3596 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Loncaric, Ivor A1 - Alducin, Maite A1 - Saalfrank, Peter A1 - Inaki Juaristi, J. T1 - Femtosecond laser pulse induced desorption: A molecular dynamics simulation JF - Nature climate change N2 - In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which 02 is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results. (C) 2016 Elsevier B.V. All rights reserved. KW - Laser induced desorption KW - Molecular dynamics with friction KW - Local density friction approximation KW - Generalized Langevin oscillator model Y1 - 2016 U6 - https://doi.org/10.1016/j.nimb.2016.02.051 SN - 0168-583X SN - 1872-9584 VL - 382 SP - 114 EP - 118 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scholz, Robert A1 - Lindner, Steven A1 - Loncaric, Ivor A1 - Tremblay, Jean Christophe A1 - Juaristi, J. A1 - Alducin, Maite A1 - Saalfrank, Peter T1 - Vibrational response and motion of carbon monoxide on Cu(100) driven by femtosecond laser pulses: Molecular dynamics with electronic friction JF - Physical review : B, Condensed matter and materials physics N2 - Carbon monoxide on copper surfaces continues to be a fascinating, rich microlab for many questions evolving in surface science. Recently, hot-electron mediated, femtosecond-laser pulse induced dynamics of CO molecules on Cu(100) were the focus of experiments [Inoue et al., Phys. Rev. Lett. 117, 186101 (2016)] and theory [Novko et al., Phys. Rev. Lett. 122, 016806 (2019)], unraveling details of the vibrational nonequilibrium dynamics on ultrashort (subpicoseconds) timescales. In the present work, full-dimensional time-resolved hot-electron driven dynamics are studied by molecular dynamics with electronic friction (MDEF). Dissipation is included by a friction term in a Langevin equation which describes the coupling of molecular degrees of freedom to electron-hole pairs in the copper surface, calculated from gradient-corrected density functional theory (DFT) via a local density friction approximation (LDFA). Relaxation due to surface phonons is included by a generalized Langevin oscillator model. The hot-electron induced excitation is described via a time-dependent electronic temperature, the latter derived from an improved two-temperature model. Our parameter-free simulations on a precomputed potential energy surface allow for excellent statistics, and the observed trends are confirmed by on-the-fly ab initio molecular dynamics with electronic friction (AIMDEF) calculations. By computing time-resolved frequency maps for selected molecular vibrations, instantaneous frequencies, probability distributions, and correlation functions, we gain microscopic insight into hot-electron driven dynamics and we can relate the time evolution of vibrational internal CO stretch-mode frequencies to measured data, notably an observed redshift. Quantitatively, the latter is found to be larger in MDEF than in experiment and possible reasons are discussed for this observation. In our model, in addition we observe the excitation and time evolution of large-amplitude low-frequency modes, lateral CO surface diffusion, and molecular desorption. Effects of surface atom motion and of the laser fluence are also discussed. Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevB.100.245431 SN - 2469-9950 SN - 2469-9969 VL - 100 IS - 24 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Martinazzo, Rocco A1 - Nest, Mathias A1 - Saalfrank, Peter A1 - Tantardini, Gian Franco T1 - A local coherent-state approximation to system-bath quantum dynamics JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - A novel quantum method to deal with typical system-bath dynamical problems is introduced. Subsystem discrete variable representation and bath coherent-state sets are used to write down a multiconfigurational expansion of the wave function of the whole system. With the help of the Dirac-Frenkel variational principle, simple equations of motion-a kind of Schrodinger-Langevin equation for the subsystem coupled to (pseudo) classical equations for the bath-are derived. True dissipative dynamics at all times is obtained by coupling the bath to a secondary, classical Ohmic bath, which is modeled by adding a friction coefficient in the derived pseudoclassical bath equations. The resulting equations are then solved for a number of model problems, ranging from tunneling to vibrational relaxation dynamics. Comparison of the results with those of exact, multiconfiguration time-dependent Hartree calculations in systems with up to 80 bath oscillators shows that the proposed method can be very accurate and might be of help in studying realistic problems with very large baths. To this end, its linear scaling behavior with respect to the number of bath degrees of freedom is shown in practice with model calculations using tens of thousands of bath oscillators. Y1 - 2006 U6 - https://doi.org/10.1063/1.2362821 SN - 0021-9606 SN - 1089-7690 VL - 125 IS - 19 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Loncaric, Ivor A1 - Fuchsel, Gernot A1 - Juaristi, J. I. A1 - Saalfrank, Peter T1 - Strong Anisotropic Interaction Controls Unusual Sticking and Scattering of CO at Ru(0001) JF - Physical review letters N2 - Complete sticking at low incidence energies and broad angular scattering distributions at higher energies are often observed in molecular beam experiments on gas-surface systems which feature a deep chemisorption well and lack early reaction barriers. Although CO binds strongly on Ru(0001), scattering is characterized by rather narrow angular distributions and sticking is incomplete even at low incidence energies. We perform molecular dynamics simulations, accounting for phononic (and electronic) energy loss channels, on a potential energy surface based on first-principles electronic structure calculations that reproduce the molecular beam experiments. We demonstrate that the mentioned unusual behavior is a consequence of a very strong rotational anisotropy in the molecule-surface interaction potential. Beyond the interpretation of scattering phenomena, we also discuss implications of our results for the recently proposed role of a precursor state for the desorption and scattering of CO from ruthenium. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevLett.119.146101 SN - 0031-9007 SN - 1079-7114 VL - 119 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Andrianov, Ivan A1 - Saalfrank, Peter T1 - Free vibrational relaxation of H adsorbed on a Si(100) surface investigated with the multi-configurational time-dependent Hartree method JF - Chemical physics letters N2 - The results of a quantum-mechanical study of vibrational relaxation of hydrogen adsorbed on a Si(100) surface with the multi-configurational time-dependent Hartree (MCTDH) method are presented. A two-dimensional subsystem is coupled non-linearly to a bath of harmonic oscillators (phonons of the Si bulk), and the relaxation of subsystem vibrations proceeds primarily via a two-phonon process. Characteristic times of the system evolution agree well with our previous perturbation theory study. The vibrational population decay is non-exponential, exhibiting pronounced recurrences due to finite bath size. The dependence of the lifetimes of the vibrational levels on the bath size and on the coupling details is investigated. Y1 - 2006 U6 - https://doi.org/10.1016/j.cplett.2006.11.067 SN - 0009-2614 VL - 433 SP - 91 EP - 96 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Melani, Giacomo A1 - Nagata, Yuki A1 - Wirth, Jonas A1 - Saalfrank, Peter T1 - Vibrational spectroscopy of hydroxylated alpha-Al2O3(0001) surfaces with and without water BT - an ab initio molecular dynamics study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Using gradient- and dispersion-corrected density functional theory in connection with ab initio molecular dynamics and efficient, parametrized Velocity-Velocity Autocorrelation Function (VVAF) methodology, we study the vibrational spectra (Vibrational Sum Frequency, VSF, and infrared, IR) of hydroxylated alpha-Al2O3(0001) surfaces with and without additional water. Specifically, by considering a naked hydroxylated surface and the same surface with a particularly stable, "ice-like" hexagonal water later allows us to identify and disentangle main spectroscopic bands of OH bonds, their orientation and dynamics, and the role of water adsorption. In particular, we assign spectroscopic signals around 3700 cm(-1) as being dominated by perpendicularly oriented non-hydrogen bonded aluminol groups, with and without additional water. Furthermore, the thin water layer gives spectroscopic signals which are already comparable to previous theoretical and experimental findings for the solid/(bulk) liquid interface, showing that water molecules closest to the surface play a decisive role in the vibrational response of these systems. From a methodological point of view, the effects of temperature, anharmonicity, hydrogen-bonding, and structural dynamics are taken into account and analyzed, allowing us to compare the calculated IR and VSF spectra with the ones based on normal mode analysis and vibrational density of states. The VVAF approach employed in this work appears to be a computationally accurate yet feasible method to address the vibrational fingerprints and dynamical properties of water/metal oxide interfaces. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5023347 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 1 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Abdullahu, Leonora A1 - Grubert, Lutz A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z -> E Azobenzene Isomerization JF - CHEM N2 - Whereas the reversible reduction of azobenzenes has been known for decades, their oxidation is destructive and as a result has been notoriously overlooked. Here, we show that a chain reaction leading to quantitative Z -> E isomerization can be initiated before reaching the destructive anodic peak potential. This hole-catalyzed pathway is accessible to all azobenzenes, without exception, and offers tremendous advantages over the recently reported reductive, radical-anionic pathway because it allows for convenient chemical initiation without the need for electrochemical setups and in the presence of air. In addition, catalytic amounts of metal-free sensitizers, such as methylene blue, can be used as excited-state electron acceptors, enabling a shift of the excitation wavelength to the far red of the azobenzene absorption (up to 660 nm) and providing quantum yields exceeding unity (up to 200%). Our approach will boost the efficiency and sensitivity of optically dense liquid-crystalline and solid photo-switchable materials. Y1 - 2018 U6 - https://doi.org/10.1016/j.chempr.2018.06.002 SN - 2451-9294 VL - 4 IS - 7 SP - 1740 EP - 1755 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Hänsel, Marc A1 - Barta, Christoph A1 - Rietze, Clemens A1 - Utecht, Manuel Martin A1 - Rueck-Braun, Karola A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Two-Dimensional Nonlinear Optical Switching Materials BT - Molecular Engineering toward High Nonlinear Optical Contrasts JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Combining photochromism and nonlinear optical (NLO) properties of molecular switches-functionalized self-assembled monolayers (SAMs) represents a promising concept toward novel photonic and optoelectronic devices. Using second harmonic generation, density functional theory, and correlated wave function methods, we studied the switching abilities as well as the NLO contrasts between different molecular states of various fulgimide-containing SAMs on Si(111). Controlled variations of the linker systems as well as of the fulgimides enabled us to demonstrate very efficient reversible photoinduced ring-opening/closure reactions between the open and closed forms of the fulgimides. Thus, effective cross sections on the order of 10(-18) cm(-2) are observed. Moreover, the reversible switching is accompanied by pronounced NLO contrasts up to 32%. Further molecular engineering of the photochromic switches and the linker systems may even increase the NLO contrast upon switching. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.8b08212 SN - 1932-7447 SN - 1932-7455 VL - 122 IS - 44 SP - 25555 EP - 25564 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ehlert, Christopher A1 - Gühr, Markus A1 - Saalfrank, Peter T1 - An efficient first principles method for molecular pump-probe NEXAFS spectra BT - application to thymine and azobenzene JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Pump-probe near edge X-ray absorption fine structure (PP-NEXAFS) spectra of molecules offer insight into valence-excited states, even if optically dark. In PP-NEXAFS spectroscopy, the molecule is "pumped" by UV or visible light enforcing a valence excitation, followed by an X-ray "probe" exciting core electrons into (now) partially empty valence orbitals. Calculations of PP-NEXAFS have so far been done by costly, correlated wavefunction methods which are not easily applicable to medium-sized or large molecules. Here we propose an efficient, first principles method based on density functional theory in combination with the transition potential and Delta SCF methodology (TP-DFT/Delta SCF) to compute molecular ground state and PP-NEXAFS spectra. We apply the method to n ->pi* pump/O-K-edge NEXAFS probe spectroscopy of thymine (for which both experimental and other theoretical data exist) and to n -> pi* or pi -> pi* pump/N-K-edge NEXAFS probe spectroscopies of trans-and cis-azobenzene. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5050488 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 14 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Xiong, Tao A1 - Wlodarczyk, Radoslaw A1 - Saalfrank, Peter T1 - Vibrationally resolved absorption and fluorescence spectra of perylene and N-substituted derivatives from autocorrelation function approaches JF - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature N2 - Vibrationally resolved absorption and emission (fluorescence) spectra of perylene and its N-derivatives in gas phase and in solution (acetonitrile) were simulated using a time-dependent approach based on correlation functions determined by density functional theory. By systematically varying the number and position of N atoms, it is shown that the presence of nitrogen heteroatoms has a negligible effect on the molecular structure and geometric distortions upon electronic transitions, while spectral properties change: in particular the number of N atoms is important while their position is less decisive. Thus, the N-substitution can be used to fine-tune the optical properties of perylene-based molecules. KW - Perylene KW - Vibronic spectrum KW - Correlation function KW - Dimer KW - Excimer KW - PCM Y1 - 2018 U6 - https://doi.org/10.1016/j.chemphys.2018.06.011 SN - 0301-0104 SN - 1873-4421 VL - 515 SP - 728 EP - 736 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Saalfrank, Peter T1 - Laser-pulse driven electron dynamics and their control treated by wave function methods T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2018 SN - 0065-7727 VL - 256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lorenz, U. A1 - Saalfrank, Peter T1 - A novel system-bath Hamiltonian for vibration-phonon coupling BT - Formulation, and application to the relaxation of Si-H and Si-D bending modes of H/D:Si(100)-(2 x 1) JF - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature N2 - We present a rigorous method to set up a system-bath Hamiltonian for the coupling of adsorbate vibrations (the system) to surface phonons (the bath). The Hamiltonian is straightforward to derive and exact up to second order in the environment coordinates, thus capable of treating one- and two-phonon contributions to vibration-phonon coupling. The construction of the Hamiltonian uses orthogonal coordinates for system and bath modes, is based on an embedded cluster approach, and generalizes previous Hamiltonians of a similar type, but avoids several (additional) approximations. While the parametrization of the full Hamiltonian is in principle feasible by a first principles quantum mechanical treatment, here we adopt in the spirit of a QM/MM model a combination of density functional theory (“QM”, for the system) and a semiempirical forcefield (“MM”, for the bath). We apply the Hamiltonian to a fully H-covered Si(100)-(2 × 1) surface, using Fermi’s Golden Rule to obtain vibrational relaxation rates of various H–Si bending modes of this system. As in earlier work it is found that the relaxation is dominated by two-phonon contributions because of an energy gap between the Si–H bending modes and the Si phonon bands. We obtain vibrational lifetimes (of the first excited state) on the order of 2 ps at K. The lifetimes depend only little on the type of bending mode (symmetric vs. antisymmetric, parallel vs. perpendicular to the Si2H2 dimers). They decrease by a factor of about two when heating the surface to 300 K. We also study isotope effects by replacing adsorbed H atoms by deuterium, D. The Si–D bending modes are shifted into the Si phonon band of the solid, opening up one-phonon decay channels and reducing the lifetimes to few hundred fs. Y1 - 2016 U6 - https://doi.org/10.1016/j.chemphys.2016.06.004 SN - 0301-0104 SN - 1873-4421 VL - 482 SP - 69 EP - 80 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Juaristi, J. I. A1 - Alducin, Maite A1 - Saalfrank, Peter T1 - Femtosecond laser induced desorption of H-2, D-2, and HD from Ru(0001) BT - dynamical promotion and suppression studied with ab initio molecular dynamics with electronic friction JF - Physical review : B, Condensed matter and materials physics N2 - We perform ab initio molecular dynamics simulations to study the femtosecond laser induced desorption of H-2, D-2, and HD from a H: D-saturated Ru(0001) surface. To this aim we have extended the ab initio molecular dynamics with electronic friction (AIMDEF) scheme to include a random force that is a function of a timedependent electronic temperature. The latter characterizes the action of the ultrashort laser pulse according to a two temperature model. This allows us to perform multidimensional, hot-electron driven reaction dynamics and investigate the dependence of the desorption yields on the relative H: D isotope concentration on the surface. Our AIMDEF simulations show that the desorption process takes place in the presence of a heated adsorbate system that clearly influences the desorption dynamics. The heating of the adsorbate system is more (less) pronounced the larger is the concentration of the lighter (heavier) isotope. As a result, we conclude that the presence of H on the surface favors the desorption of molecules, whereas the presence of D hampers it, in agreement with previous experimental observations in which the phenomenon of "dynamical promotion" of a surface reaction had been postulated. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.95.125439 SN - 2469-9950 SN - 2469-9969 VL - 95 IS - 12 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Malyar, Ivan V. A1 - Titov, Evgenii A1 - Lomadze, Nino A1 - Saalfrank, Peter A1 - Santer, Svetlana A. T1 - Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). Itwas found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of thework function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions. Published by AIP Publishing. Y1 - 2017 U6 - https://doi.org/10.1063/1.4978225 SN - 0021-9606 SN - 1089-7690 VL - 146 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Herder, Martin A1 - Utecht, Manuel Martin A1 - Manicke, Nicole A1 - Grubert, Lutz A1 - Pätzel, Michael A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Switching with orthogonal stimuli electrochemical ring-closure and photochemical ring-opening of bis(thiazolyl) maleimides JF - Chemical science N2 - The photochemistry as well as electrochemistry of novel donor-acceptor bis(morpholinothiazolyl)maleimides has been investigated. Proper substitution of these diarylethene-type molecular switches leads to the unique situation in which their ring-closure can only be accomplished electrochemically, while ring-opening can only be achieved photochemically. Hence, these switches operate with orthogonal stimuli, i.e. redox potential and light, respectively. The switch system could be optimized by introducing trifluoromethyl groups at the reactive carbon atoms in order to avoid by-product formation during oxidative ring closure. Both photochemical and electrochemical pathways were investigated for methylated, trifluoromethylated, and nonsymmetrical bis(morpholinothiazolyl) maleimides as well as the bis(morpholinothiazolyl) cyclopentene reference compound. With the aid of the nonsymmetrical "mixed" derivative, the mechanism of electrochemically driven ring closure could be elucidated and seems to proceed via a dicationic intermediate generated by two-fold oxidation. All experimental work has been complemented by density functional theory that provides detailed insights into the thermodynamics of the ring-open and closed forms, the nature of their excited states, and the reactivity of their neutral as well as ionized species in different electronic configurations. The particular diarylethene systems described herein could serve in multifunctional (logic) devices operated by different stimuli (inputs) and may pave the way to converting light into electrical energy via photoinduced "pumping" of redox-active meta-stable states. Y1 - 2013 U6 - https://doi.org/10.1039/c2sc21681g SN - 2041-6520 VL - 4 IS - 3 SP - 1028 EP - 1040 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10−18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 196 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81198 ER - TY - JOUR A1 - Xiong, Tao A1 - Saalfrank, Peter T1 - Vibrationally Broadened Optical Spectra of Selected Radicals and Cations Derived from Adamantane: A Time-Dependent Correlation Function Approach JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Diamondoids are hydrogen-saturated molecular motifs cut out of diamond, forming a class of materials with tunable optoelectronic properties. In this work, we extend previous work on neutral, closed-shell diamondoids by computing with hybrid density functional theory and time-dependent correlation functions vibrationally broadened absorption spectra of cations and radicals derived from the simplest diamondoid, adamantane, namely, the neutral 1- and 2-adamantyl radicals (C10H15), the 1- and 2-adamantyl cations (C10H15+), and the adamantane radical cation (C10H16+). For selected cases, we also report vibrationally broadened emission, photoelectron, and resonance Raman spectra. Furthermore, the effect of the damping factor on the vibrational fine-structure is studied. The following trends are found: (1) Low-energy absorptions of the adamantyl radicals and cations, and of the adamantane cation, are all strongly red-shifted with respect to adamantane; (2) also, emission spectra are strongly red-shifted, whereas photoelectron spectra are less affected for the cases studied; (3) vibrational fine-structures are reduced compared to those of adamantane; (4) the spectroscopic signals of 1- and 2-adamantyl species are significantly different from each other; and (5) reducing the damping factor has only a limited effect on the vibrational fine-structure in most cases. This suggests that removing hydrogen atoms and/or electrons from adamantane leads to new optoelectronic properties, which should be detectable by vibronic spectroscopy. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpca.9b03305 SN - 1089-5639 SN - 1520-5215 VL - 123 IS - 41 SP - 8871 EP - 8880 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Füchsel, Gernot A1 - Klamroth, Tillmann A1 - Dokic, Jadranka A1 - Saalfrank, Peter T1 - On the electronic structure of neutral and ionic azobenzenes and their possible role as surface mounted molecular switches JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - We report quantum chemical calculations, mostly based on density functional theory, on azobenzene and substituted azobenzenes as neutral molecules or ions, in ground and excited states. Both the cis and trans configurations are computed as well as the activation energies to transform one isomer into the other and the possible reaction paths and reaction surfaces along the torsion and inversion modes. All calculations are done for the isolated species, but results are discussed in light of recent experiments aiming at the switching of surface mounted azobenzenes by scanning tunneling microscopes. Y1 - 2006 U6 - https://doi.org/10.1021/jp060969v SN - 1520-6106 VL - 110 IS - 33 SP - 16337 EP - 16345 PB - Soc. CY - Washington ER - TY - JOUR A1 - Saalfrank, Peter T1 - Quantum dynamical approach to ultrafast molecular desorption from surfaces JF - Chemical reviews Y1 - 2006 U6 - https://doi.org/10.1021/cr0501691 SN - 0009-2665 SN - 1520-6890 VL - 106 IS - 10 SP - 4116 EP - 4159 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1301 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577442 SN - 1866-8372 N1 - These authors contributed equally: D. Mayer, F. Lever. A Publisher Correction to this article was published on 09 March 2022. This article has been updated. IS - 1301 ER - TY - JOUR A1 - Penschke, Christopher A1 - Edler von Zander, Robert A1 - Beqiraj, Alkit A1 - Zehle, Anna A1 - Jahn, Nicolas A1 - Neumann, Rainer A1 - Saalfrank, Peter T1 - Water on porous, nitrogen-containing layered carbon materials BT - the performance of computational model chemistries JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies / RSC, Royal Society of Chemistry N2 - Porous, layered materials containing sp(2)-hybridized carbon and nitrogen atoms, offer through their tunable properties, a versatile route towards tailormade catalysts for electrochemistry and photochemistry. A key molecule interacting with these quasi two-dimensional materials (2DM) is water, and a photo(electro)chemical key reaction catalyzed by them, is water splitting into H-2 and O-2, with the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) as half reactions. The complexity of some C/N-based 2DM in contact with water raises special needs for their theoretical modelling, which in turn is needed for rational design of C/N-based catalysts. In this work, three classes of C/N-containing porous 2DM with varying pore sizes and C/N ratios, namely graphitic carbon nitride (g-C3N4), C2N, and poly(heptazine imides) (PHI), are studied with various computational methods. We elucidate the performance of different models and model chemistries (the combination of electronic structure method and basis set) for water and water fragment adsorption in the low-coverage regime. Further, properties related to the photo(electro)chemical activity like electrochemical overpotentials, band gaps, and optical excitation energies are in our focus. Specifically, periodic models will be tested vs. cluster models, and density functional theory (DFT) vs. wavefunction theory (WFT). This work serves as a basis for a systematic study of trends for the photo(electro)chemical activity of C/N-containing layered materials as a function of water content, pore size and density. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp00657j SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 24 SP - 14709 EP - 14726 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics for azobenzene photoisomerization BT - effects of packing density on surfaces, fluorination, and excitation wavelength JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Azobenzenes easily photoswitch in solution, while their photoisomerization at surfaces is often hindered. In recent work, it was demonstrated by nonadiabatic molecular dynamics with trajectory surface hopping [Titov et al., J. Phys. Chem. Lett. 2016, 7, 3591-3596] that the experimentally observed suppression of trans -> cis isomerization yields in azobenzenes in a densely packed SAM (self-assembled monolayer) [Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831-1838] is dominated by steric hindrance. In the present work, we systematically study by ground-state Langevin and nonadiabatic surface hopping dynamics, the effects of decreasing packing density on (i) UV/vis absorption spectra, (ii) trans -> cis isomerization yields, and (iii) excited-state lifetimes of photoexcited azobenzene. Within the quantum mechanics/ molecular mechanics models adopted here, we find that above a packing density of similar to 3 molecules/nm(2), switching yields are strongly reduced, while at smaller packing densities, the "monomer limit" is quickly approached. The UV/vis absorption spectra, on the other hand, depend on packing density over a larger range (down to at least similar to 1 molecule/nm(2)). Trends for excited-state lifetimes are less obvious, but it is found that lifetimes of pi pi* excited states decay monotonically with decreasing coverage. Effects of fluorination of the switches are also discussed for single, free molecules. Fluorination leads to comparatively large trans -> cis yields, in combination with long pi pi* lifetimes. Furthermore, for selected systems, also the effects of n pi* excitation at longer excitation wavelengths have been studied, which is found to enhance trans -> cis yields for free molecules but can lead to an opposite behavior in densely packed SAMs. KW - Computational chemistry KW - Energy KW - Molecules KW - Monomers KW - Oligomers Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c08052 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 48 SP - 26287 EP - 26295 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kogikoski Junior, Sergio A1 - Tapio, Kosti A1 - Edler von Zander, Robert A1 - Saalfrank, Peter A1 - Bald, Ilko T1 - Raman enhancement of nanoparticle dimers self-assembled using DNA origami nanotriangles JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 10(6) at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values. KW - surface-enhanced Raman scattering KW - DNA origami KW - resonance Raman KW - scattering KW - nanoparticle dimers Y1 - 2021 U6 - https://doi.org/10.3390/molecules26061684 SN - 1420-3049 VL - 26 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Titov, Evgenii A1 - Saalfrank, Peter T1 - Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Molecular photoswitches such as azobenzenes, which undergo photochemical trans <-> cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to. neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock. (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based, coupled cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an:example: The low-lying singlet excited states in the isolated trans monomer and dieter as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further, strong red shift for the present system. (iv) At a next-nearest neighbor distance (of similar to 3.6 angstrom), the exciton splitting is similar to 0.3 eV, with or without "surface", suggesting a rapid quenching of the molecular pi ->pi* excitation. At larger distances, exciton splitting decreases rapidly. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpca.5b10376 SN - 1089-5639 VL - 120 SP - 3055 EP - 3070 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Loncaric, Ivor A1 - Alducin, Maite A1 - Saalfrank, Peter A1 - Juaristi, J. I. T1 - Femtosecond-laser-driven molecular dynamics on surfaces: Photodesorption of molecular oxygen from Ag(110) JF - Physical review : B, Condensed matter and materials physics N2 - We simulate the femtosecond-laser-induced desorption dynamics of a diatomic molecule from a metal surface by including the effect of the electron and phonon excitations created by the laser pulse. Following previous models, the laser-induced surface excitation is treated through the two temperature model, while the multidimensional dynamics of the molecule is described by a classical Langevin equation, in which the friction and random forces account for the action of the heated electrons. In this work we propose the additional use of the generalized Langevin oscillator model to also include the effect of the energy exchange between the molecule and the heated surface lattice in the desorption dynamics. The model is applied to study the laser-induced desorption of O-2 from the Ag(110) surface, making use of a six-dimensional potential energy surface calculated within density functional theory. Our results reveal the importance of the phonon mediated process and show that, depending on the value of the electronic density in the surroundings of the molecule adsorption site, its inclusion can significantly enhance or reduce the desorption probabilities. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevB.93.014301 SN - 1098-0121 SN - 1550-235X VL - 93 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - White, Alec F. A1 - Heide, Chiara Josephine A1 - Saalfrank, Peter A1 - Head-Gordon, Martin A1 - Luppi, Eleonora T1 - Computation of high-harmonic generation spectra of the hydrogen molecule using time-dependent configuration-interaction JF - Molecular physics N2 - Here we apply and expand the knowledge developed in the case of the H atom to describe high-harmonic generation (HHG) for the H-2 molecule by using time-dependent configuration interaction with single excitations. The implications of using a finite atomic orbital basis set and the impact of a heuristic lifetime model which addresses ionisation losses are discussed. We also examine the influence of the angular momentum of the basis on the computed HHG spectra. Moreover, we discuss the impact of adding diffuse functions and ghost atoms in different geometrical configurations around the molecule. The effects of these additional centres on the HHG spectra are correlated with the physical interpretation of this nonlinear optical phenomenon as given by the three-step model, relating the maximal radial extent of the electron as predicted by the model to the radial extent of the Gaussian basis sets. [GRAPHICS] . KW - High-harmonic generation KW - strong field KW - time-dependent configuration interaction Y1 - 2016 U6 - https://doi.org/10.1080/00268976.2015.1119900 SN - 0026-8976 SN - 1362-3028 VL - 114 SP - 947 EP - 956 PB - Springer CY - Abingdon ER - TY - JOUR A1 - Schönborn, Jan Boyke A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Controlling the high frequency response of H-2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H-2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization. (C) 2016 AIP Publishing LLC. Y1 - 2016 U6 - https://doi.org/10.1063/1.4940316 SN - 0021-9606 SN - 1089-7690 VL - 144 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([C(n)C(1)im](+)[NTf2](-) and [C(4)C(1)im](+)[I](-)). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. Y1 - 2016 U6 - https://doi.org/10.1039/c5cp07434g SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 8654 EP - 8661 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wirth, Jonas A1 - Schacht, Julia A1 - Saalfrank, Peter A1 - Paulus, Beate T1 - Fluorination of the Hydroxylated alpha-Al2O3 (0001) and Its Implications for Water Adsorption: A Theoretical Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Fluorination of the hydroxylated alpha-Al2O3 (0001) surface is studied using periodic density functional theory calculations. On the basis of a hypothetical reaction substituting surface hydroxyl groups with fluorine atoms, we find surface fluorination to be strongly exergonic but kinetically hindered. Fluorinated surface areas turn out to be rather hydrophobic as compared to hydroxylated areas, suggesting fluorination as a potential route for tuning oxide surface properties such as hydrophilicity. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.5b10975 SN - 1932-7447 VL - 120 SP - 9713 EP - 9718 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bedurke, Florian A1 - Klamroth, Tillmann A1 - Krause, Pascal A1 - Saalfrank, Peter T1 - Discriminating organic isomers by high harmonic generation BT - A time-dependent configuration interaction singles study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High Harmonic Generation (HHG) is a nonlinear optical process that provides a tunable source for high-energy photons and ultrashort laser pulses. Recent experiments demonstrated that HHG spectroscopy may also be used as an analytical tool to discriminate between randomly oriented configurational isomers of polyatomic organic molecules, namely, between the cis- and trans-forms of 1,2-dichloroethene (DCE) [M. C. H. Wong et al., Phys. Rev. A 84, 051403 (2011)]. Here, we suggest as an economic and at the same time a reasonably accurate method to compute HHG spectra for polyatomic species, Time-Dependent Configuration Interaction Singles (TD-CIS) theory in combination with extended atomic orbital bases and different models to account for ionization losses. The HHG spectra are computed for aligned and unaligned cis- and trans-DCE. For the unaligned case, a coherent averaging over possible rotational orientations is introduced. Furthermore, using TD-CIS, possible differences between the HHG spectra of cis- and trans-DCE are studied. For aligned molecules, spectral differences between cis and trans emerge, which can be related to their different point group symmetries. For unaligned, randomly oriented molecules, we also find distinct HHG spectra in partial agreement with experiment. In addition to HHG response in the frequency space, we compute time-frequency HHG spectra to gain insight into which harmonics are emitted at which time. Further differences between the two isomers emerge, suggesting time-frequency HHG as another tool to discriminate configurational isomers. Y1 - 2019 U6 - https://doi.org/10.1063/1.5096473 SN - 0021-9606 SN - 1089-7690 VL - 150 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Fischer, Eric W. A1 - Saalfrank, Peter T1 - Cavity-induced non-adiabatic dynamics and spectroscopy of molecular rovibrational polaritons studied by multi-mode quantum models JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We study theoretically the quantum dynamics and spectroscopy of rovibrational polaritons formed in a model system composed of a single rovibrating diatomic molecule, which interacts with two degenerate, orthogonally polarized modes of an optical Fabry-Perot cavity. We employ an effective rovibrational Pauli-Fierz Hamiltonian in length gauge representation and identify three-state vibro-polaritonic conical intersections (VPCIs) between singly excited vibro-polaritonic states in a two-dimensional angular coordinate branching space. The lower and upper vibrational polaritons are of mixed light-matter hybrid character, whereas the intermediate state is purely photonic in nature. The VPCIs provide effective population transfer channels between singly excited vibrational polaritons, which manifest in rich interference patterns in rotational densities. Spectroscopically, three bright singly excited states are identified when an external infrared laser field couples to both a molecular and a cavity mode. The non-trivial VPCI topology manifests as pronounced multi-peak progression in the spectral region of the upper vibrational polariton, which is traced back to the emergence of rovibro-polaritonic light-matter hybrid states. Experimentally, ubiquitous spontaneous emission from cavity modes induces a dissipative reduction of intensity and peak broadening, which mainly influences the purely photonic intermediate state peak as well as the rovibro-polaritonic progression. Published under an exclusive license by AIP Publishing. Y1 - 2022 U6 - https://doi.org/10.1063/5.0098006 SN - 0021-9606 SN - 1089-7690 VL - 157 IS - 3 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Fischer, Eric W. A1 - Saalfrank, Peter T1 - Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Recent experiments and theory suggest that ground state properties and reactivity of molecules can be modified when placed inside a nanoscale cavity, giving rise to strong coupling between vibrational modes and the quantized cavity field. This is commonly thought to be caused either by a cavity-distorted Born-Oppenheimer ground state potential or by the formation of light-matter hybrid states, vibrational polaritons. Here, we systematically study the effect of a cavity on ground state properties and infrared spectra of single molecules, considering vibration-cavity coupling strengths from zero up to the vibrational ultrastrong coupling regime. Using single-mode models for Li-H and O-H stretch modes and for the NH3 inversion mode, respectively, a single cavity mode in resonance with vibrational transitions is coupled to position-dependent molecular dipole functions. We address the influence of the cavity mode on polariton ground state energies, equilibrium bond lengths, dissociation energies, activation energies for isomerization, and on vibro-polaritonic infrared spectra. In agreement with earlier work, we observe all mentioned properties being strongly affected by the cavity, but only if the dipole self-energy contribution in the interaction Hamiltonian is neglected. When this term is included, these properties do not depend significantly on the coupling anymore. Vibro-polaritonic infrared spectra, in contrast, are always affected by the cavity mode due to the formation of excited vibrational polaritons. It is argued that the quantized nature of vibrational polaritons is key to not only interpreting molecular spectra in cavities but also understanding the experimentally observed modification of molecular reactivity in cavities. Y1 - 2021 U6 - https://doi.org/10.1063/5.0040853 SN - 0021-9606 SN - 1089-7690 VL - 154 IS - 10 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Utecht, Manuel A1 - Mutruc, Dragos A1 - Titov, Evgenii A1 - Schwarz, Jutta A1 - Grubert, Lutz A1 - Bleger, David A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Electrocatalytic Z -> E Isomerization of Azobenzenes JF - Journal of the American Chemical Society N2 - A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z -> E) by the same wavelength of light, which normally triggers E -> Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.6b10822 SN - 0002-7863 VL - 139 IS - 1 SP - 335 EP - 341 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - von Zander, Robert Edler A1 - Saalfrank, Peter T1 - On the borate-catalyzed electrochemical reduction of phosphine oxide BT - a computational study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Recently, Nocera and co-workers (J. Am. Chem. Soc. 2018, 140, 13711) demonstrated that triaryl borate Lewis acids facilitate the direct electrochemical reduction of triphenylphosphine oxide (TPPO) to triphenylphosphine (TPP). In the present contribution, we report a quantum chemical study unravelling details of the reaction, which also supports the proposed ECrECi mechanism. Alternative electrochemical routes to TPPO reduction facilitated by other Lewis acids (CH3+), or by photocatalysis at semiconductor surfaces, are also briefly discussed. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c07805 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 49 SP - 10239 EP - 10245 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schmidt, Roland A1 - Hagen, Sebastian A1 - Brete, Daniel A1 - Carley, Robert A1 - Gahl, Cornelius A1 - Dokic, Jadranka A1 - Saalfrank, Peter A1 - Hecht, Stefan A1 - Tegeder, Petra A1 - Weinelt, Martin T1 - On the electronic and geometrical structure of the trans- and cis-isomer of tetra-tert-butyl-azobenzene on Au(111) N2 - Near edge X-ray absorption. ne structure and X-ray photoelectron spectroscopy have been employed to follow the reversible trans to cis isomerization of tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). For one monolayer the molecules adopt an adsorption geometry characteristic of the trans-TBA isomer. The azo-bridge (N = N) is aligned nearly parallel to the surface and the phenyl rings exhibit a planar orientation with a small tilt angle <= 4 degrees with respect to the surface normal. Illumination of the molecular layer at 455 nm triggers the trans to cis isomerization which is associated with a pronounced change of the geometrical and electronic structure. The N1s to pi* transition of the central azo-bridge shifts by 0.45 +/- 0.05 eV to higher photon energy and the transition dipole moment (TDM) is tilted by 59 +/- 5 degrees with respect to the surface normal. The pi-system of one phenyl ring is tilted by about 30 degrees with respect to the surface normal, while the second ring plane is oriented nearly perpendicular to the surface. This reorientation is supported by a shift and broadening of the C-H resonances associated with the tert-butyl legs of the molecule. These findings support a configuration of the photo-switched TBA molecule on Au(111) which is comparable to the cis-isomer of the free molecule. In the photo-stationary state 53 +/- 5% of the TBA molecules are switched to the cis configuration. Thermal activation induces the back reaction to trans-TBA. Y1 - 2010 UR - http://pubs.rsc.org/en/content/articlehtml/2010/cp/b924409c U6 - https://doi.org/10.1039/B924409c SN - 1463-9076 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mickler, Wulfhard A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Holdt, Hans-Jürgen T1 - Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination N2 - Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorophore probes 1-13 consist of a fluorophore group, in alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed, dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second. fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (E-Ox) through electron-withdrawing or -donating groups on the anthracene moiety regulates file thermodynamic driving force for oxidative PET (Delta G(PET)) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (Phi(f)), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized. Y1 - 2010 UR - http://onlinelibrary.wiley.com/doi/10.1002/chem.200902281/pdf U6 - https://doi.org/10.1002/chem.200902281 SN - 0947-6539 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Mickler, Wulfhard A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Holdt, Hans-Jürgen T1 - Systematic investigation of photoinduced electron transfer controlled by internal charge transfer and its consequences for selective PdCl2 coordination N2 - Fluoroionophores of fluorophore-spacer-receptor format were prepared for detection of PdCl2 by fluorescence enhancement. The fluorescent probes 1-13 consist of a fluorophore group, an alkyl spacer and a dithiomaleonitrile PdCl2 receptor. First, varying the length of the alkylene spacer (compounds 1-3) revealed a dominant through-space pathway for oxidative photoinduced electron transfer (PET) in CH2-bridged dithiomaleonitrile fluoroionophores. Second, fluorescent probes 4-9 containing two anthracene or pyrene fragments connected through CH2 bridges to the dithiomaleonitrile unit were synthesized. Modulation of the oxidation potential (EOx) through electron-withdrawing or -donating groups on the anthracene moiety regulates the thermodynamic driving force for oxidative PET (GPET) in bis(anthrylmethylthio)maleonitriles and therefore the fluorescence quantum yields (f), too. The new concept was confirmed and transferred to pyrenyl ligands, and fluorescence enhancements (FE) greater than 3.2 in the presence of PdCl2 were achieved by 7 and 8 (FE=5.4 and 5.2). Finally, for comparison, monofluorophore ligands 10-13 were synthesized. Y1 - 2010 UR - http://www3.interscience.wiley.com/journal/26293/home SN - 0947-6539 ER - TY - JOUR A1 - Paramonov, Guennaddi K. A1 - Saalfrank, Peter T1 - Time-evolution operator method for non-Markovian density matrix propagation in time and space representation : application to laser association of OH in an environment N2 - An efficient method for the numerical solution of a non-Markovian, open-system density matrix equation of motion in coordinate representation is developed. We apply the scheme to model simulations of the laser-assisted O+H -> OH association reaction in an environment. The suggested approach is based on the application of the time-evolution operator to the "closed-system" part of the overall Hamiltonian and transformation of the open-system equation of motion to the Heisenberg picture suitable for numerical propagation. A dual role of the system-environment coupling with respect to the infrared (ir) laser-driven association of OH is demonstrated: the association probability is increased due to the coupling at relatively weak laser fields, but decreased at strong laser fields. Moreover, at a certain strength of the ir laser field, the association probability does not depend on the strength of the system-bath coupling at all. Y1 - 2009 UR - http://pra.aps.org/ U6 - https://doi.org/10.1103/Physreva.79.013415 SN - 1050-2947 ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Saalfrank, Peter T1 - Selective subsurface absorption of hydrogen in palladium using laser distillation N2 - A theoretical model for the selective subsurface absorption of atomic hydrogen in a Pd(111) surface by infrared (IR) laser pulses is presented. The dynamics of the adsorbate is studied within the reduced density matrix approach. Energy and phase relaxation of the hydrogen atom are treated using the semigroup formalism. The vibrational excitation leading to subsurface absorption is performed using rationally designed pulses as well as IR laser pulses optimized on- the-fly. It is shown that dissipation can be used as a tool to transfer population to an otherwise inaccessible state via a mechanism known as "laser distillation." We demonstrate that when the reaction path is generalized from a reduced one-dimensional to full three-dimensional treatment of the system, the laser control strategy can prove very different. Y1 - 2009 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.3212695 SN - 0021-9606 ER - TY - JOUR A1 - Bleger, David A1 - Dokic, Jadranka A1 - Peters, Maike V. A1 - Grubert, Lutz A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Electronic decoupling approach to quantitative photoswitching in linear multiazobenzene architectures JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - A strategy to optimize the photoswitching efficiency of rigid, linear multiazobenzene constructs is presented. It consists of introducing large dihedral angles between azobenzene moieties linked via aryl-aryl connections in their para positions. Four bisazobenzenes exhibiting different dihedral angles as well as three single azobenzene reference compounds have been synthesized, and their switching behavior has been studied as well as experimentally and theoretically analyzed. As the dihedral angle between the two azobenzene units increases and consequently the electronic conjugation decreases, the photochromic characteristics improve, finally leading to individual azobenzene switches operating independently in the case of the perpendicular ortho,ortho,ortho',ortho'-tetramethyl biphenyl linker. The electronic decoupling leads to efficient separation of the absorption spectra of the involved switching states and hence by choosing the appropriate irradiation wavelength, an almost quantitative E -> Z photoisomerization up to 97% overall Z-content can be achieved. In addition, thermal Z -> E isomerization processes become independent of each other with increasing decoupling. The electronic decoupling could furthermore be proven by electrochemistry. The experimental data are supported by theory, and calculations additionally provide mechanistic insight into the preferred pathway for the thermal Z,Z -> Z,E -> E,E isomerization via inversion on the inner N-atoms. Our decoupling approach outlined herein provides the basis for constructing rigid rod architectures composed of multiple azobenzene photochromes, which display practically quantitative photoswitching properties, a necessary prerequisite to achieve highly efficient transduction of light energy directly into motion. Y1 - 2011 U6 - https://doi.org/10.1021/jp2044114 SN - 1520-6106 VL - 115 IS - 33 SP - 9930 EP - 9940 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Weigel, A. A1 - Dobryakov, A. A1 - Klaumünzer, Bastian A1 - Sajadi, M. A1 - Saalfrank, Peter A1 - Ernsting, N. P. T1 - Femtosecond stimulated raman spectroscopy of flavin after optical excitation JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - In blue-light photoreceptors using flavin (BLUF), the signaling state is formed already within several 100 ps after illumination, with only small changes of the absorption spectrum. The accompanying structural evolution can, in principle, be monitored by femtosecond stimulated Raman spectroscopy (FSRS). The method is used here to characterize the excited-state properties of riboflavin and flavin adenine dinucleotide in polar solvents. Raman modes are observed in the range 90-1800 cm(-1) for the electronic ground state S-0 and upon excitation to the S-1 state, and modes >1000 cm(-1) of both states are assigned with the help of quantum-chemical calculations. Line shapes are shown to depend sensitively on resonance conditions. They are affected by wavepacket motion in any of the participating electronic states, resulting in complex amplitude modulation of the stimulated Raman spectra. Wavepackets in S-1 can be marked, and thus isolated, by stimulated-emission pumping with the picosecond Raman pulses. Excited-state absorption spectra are obtained from a quantitative comparison of broadband transient fluorescence and absorption. In this way, the resonance conditions for FSRS are determined. Early differences of the emission spectrum depend on excess vibrational energy, and solvation is seen as dynamic Stokes shift of the emission band. The ne state is evidenced only through changes of emission oscillator strength during solvation. S-1 quenching by adenine is seen with all methods in terms of dynamics, not by spectral intermediates. Y1 - 2011 U6 - https://doi.org/10.1021/jp1117129 SN - 1520-6106 VL - 115 IS - 13 SP - 3656 EP - 3680 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Luo, Ying A1 - Utecht, Manuel Martin A1 - Dokic, Jadranka A1 - Korchak, Sergey A1 - Vieth, Hans-Martin A1 - Haag, Rainer A1 - Saalfrank, Peter T1 - Cis-trans isomerisation of substituted aromatic imines a comparative experimental and theoretical study JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The cis-trans isomerisation of N-benzylideneaniline (NBA) and derivatives containing a central C=N bond has been investigated experimentally and theoretically. Eight different NBA molecules in three different solvents were irradiated to enforce a photochemical trans (hv) -> cis isomerisation and the kinetics of the thermal backreaction cis (Delta)-> trans were determined by NMR spectroscopy measurements in the temperature range between 193 and 288 K. Theoretical calculations using density functional theory and Eyring transition-state theory were carried out for 12 different NBA species in the gas phase and three different solvents to compute thermal isomerisation rates of the thermal back reaction. While the computed absolute rates are too large, they reveal and explain experimental trends. Time-dependent density functional theory provides optical spectra for vertical transitions and excitation energy differences between trans and cis forms. Together with isomerisation rates, the latter can be used to identify "optimal switches" with good photochromicity and reasonable thermal stability. KW - density functional calculations KW - imines KW - isomerization KW - photochemistry KW - thermochemistry Y1 - 2011 U6 - https://doi.org/10.1002/cphc.201100179 SN - 1439-4235 VL - 12 IS - 12 SP - 2311 EP - 2321 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kröner, Dominik A1 - Ehlert, Christopher A1 - Saalfrank, Peter A1 - Holländer, Andreas T1 - Ab initio calculations for XPS chemical shifts of poly(vinyl-trifluoroacetate) using trimer models JF - Surface science N2 - X-ray photoelectron spectra (XPS) of the polymer poly(vinyl-trifluoroacetate) show C(1s) binding energy shifts which are unusual because they are influenced by atoms which are several bonds away from the probed atom. In this work, the influence of the trifluoroacetate substituent on the 1s ionization potential of the carbon atoms of the polyethylene chain is investigated theoretically using mono-substituted, diad and triad models of trimers representing the polymer. Carbon 1s ionization energies are calculated by the Hartree-Fock theory employing Koopmans' theorem. The influence of the configuration and conformation of the functional groups as well as the degree of substitution are found to be important determinants of XPS spectra. It is further found that the 1s binding energy correlates in a linear fashion, with the total electrostatic potential at the position of the probe atom, and depends not only on nearest neighbor effects. This may have implications for the interpretation of high-resolution XP spectra. KW - Ab initio quantum chemical methods and calculations KW - X-ray photoelectron spectroscopy KW - Insulating films Y1 - 2011 U6 - https://doi.org/10.1016/j.susc.2011.05.021 SN - 0039-6028 VL - 605 IS - 15-16 SP - 1516 EP - 1524 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Monturet, Serge A1 - Saalfrank, Peter T1 - The Effects of electron-hole pair coupling on the infrared laser-controlled vibrational excitation of NO on Au(111) JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - In this work, we present theoretical simulations of laser-driven vibrational control of NO adsorbed on a gold surface. Our goal is to tailor laser pulses to selectively excite specific modes and vibrational eigenstates, as well as to favor photodesorption of the adsorbed molecule. To this end, various control schemes and algorithms are applied. For adsorbates at metallic surfaces, the creation of electron hole pairs in the substrate is known to play a dominant role in the transfer of energy from the system to the surroundings. These nonadiabatic couplings are included perturbatively in our reduced density matrix simulations using a generalization of the state-resolved position-dependent anharmonic rate model we recently introduced. An extension of the reduced density matrix is also proposed to provide a sound model for photodesorption in dissipative systems. Y1 - 2011 U6 - https://doi.org/10.1021/jp205902k SN - 1089-5639 VL - 115 IS - 39 SP - 10698 EP - 10707 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Floss, Gereon A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics of direct trans -> cis photoswitching of an azobenzene derivative in constrained adsorbate geometries JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans -> cis photoisomerization after pi pi* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to pi pi*-excited states which are non-adiabatically coupled among themselves and to a n pi*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans -> cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed. KW - AM1 calculations KW - bismuth KW - configuration interactions KW - excited states KW - gold KW - isomerisation KW - organic compounds KW - photochemistry KW - van der Waals forces Y1 - 2012 U6 - https://doi.org/10.1063/1.4769087 SN - 0021-9606 VL - 137 IS - 23 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Kröner, Dominik A1 - Saalfrank, Peter T1 - Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective application to beta-carotene JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of beta-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of beta-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called nu(1) peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], which shifts with the change in excitation wavelength. Y1 - 2012 U6 - https://doi.org/10.1063/1.4748147 SN - 0021-9606 VL - 137 IS - 22 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wirth, Jonas A1 - Saalfrank, Peter T1 - The chemistry of water on alpha-alumina kinetics and nuclear quantum effects from first principles JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Water adsorption on an alumina (alpha-Al2O3) surface is studied here from first principles using periodic density functional theory in the generalized gradient approximation. Two different coverage regimes, low and high, are considered. For the low-coverage regime (with a coverage of 1/4 with respect to the number of coordinatively unsaturated Al sites), possible reactions at the surface such as dissociation, rotation, and diffusion of water and its fragments are investigated, using first principles thermodynamics and kinetics. A microkinetic model is set up with rates calculated from Eyring's transition state theory in order to cover a wide range of time scales. Special emphasis of this study is on the magnitude of quantum effects and on anharmonic corrections, particularly for reactions and dynamics. These have often been neglected in the past for water/alumina systems but can influence the system. This is particularly true for processes involving hydrogen atoms, where, for example, tunneling corrections to reaction rates are found to be important even at room temperature. For a higher-coverage regime (with a coverage of 2 ML), hydrogen dynamics becomes even more complex and is characterized, e.g., by concerted atom motion, strong anharmonicity, and delocalization. In this regime, classical molecular dynamics becomes questionable as well as quantum mechanical treatments based on the harmonic approximation. Y1 - 2012 U6 - https://doi.org/10.1021/jp310234h SN - 1932-7447 VL - 116 IS - 51 SP - 26829 EP - 26840 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Nest, Mathias A1 - Ludwig, M. A1 - Ulusoy, I. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Electron correlation dynamics in atoms and molecules JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we present quantum dynamical calculations on electron correlation dynamics in atoms and molecules using explicitly time-dependent ab initio configuration interaction theory. The goals are (i) to show that in which cases it is possible to switch off the electronic correlation by ultrashort laser pulses, and (ii) to understand the temporal evolution and the time scale on which it reappears. We characterize the appearance of correlation through electron-electron scattering when starting from an uncorrelated state, and we identify pathways for the preparation of a Hartree-Fock state from the correlated, true ground state. Exemplary results for noble gases, alkaline earth elements, and selected molecules are provided. For Mg we show that the uncorrelated state can be prepared using a shaped ultrashort laser pulse. Y1 - 2013 U6 - https://doi.org/10.1063/1.4801867 SN - 0021-9606 SN - 1089-7690 VL - 138 IS - 16 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Füchsel, Gernot A1 - Klamroth, Tillmann A1 - Monturet, Serge A1 - Saalfrank, Peter T1 - Dissipative dynamics within the electronic friction approach the femtosecond laser desorption of H-2/D-2 from Ru(0001) JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - An electronic friction approach based on Langevin dynamics is used to describe the multidimensional (six-dimensional) dynamics of femtosecond laser induced desorption of H-2 and D-2 from a H(D)-covered Ru(0001) surface. The paper extends previous reduced-dimensional models, using a similar approach. In the present treatment forces and frictional coefficients are calculated from periodic density functional theory (DFT) and essentially parameter-free, while the action of femtosecond laser pulses on the metal surface is treated by using the two-temperature model. Our calculations shed light on the performance and validity of various adiabatic, non-adiabatic, and Arrhenius/Kramers type kinetic models to describe hot-electron mediated photoreactions at metal surfaces. The multidimensional frictional dynamics are able to reproduce and explain known experimental facts, such as strong isotope effects, scaling of properties with laser fluence, and non-equipartitioning of vibrational, rotational, and translational energies of desorbing species. Further, detailed predictions regarding translations are made, and the question for the controllability of photoreactions at surfaces with the help of vibrational preexcitation is addressed. Y1 - 2011 U6 - https://doi.org/10.1039/c0cp02086a SN - 1463-9076 VL - 13 IS - 19 SP - 8659 EP - 8670 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Utecht, Manuel Martin A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp22793a SN - 1463-9076 VL - 13 IS - 48 SP - 21608 EP - 21614 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Klinkusch, Stefan A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Dissipative many-electron dynamics of ionizing systems JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (rho-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the rho-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (similar to N(2)) with the number of configurations N used to represent the reduced density matrix in the rho-TDCI method, as compared to a N(3) scaling for the model in its original form. Y1 - 2011 U6 - https://doi.org/10.1063/1.3532410 SN - 0021-9606 VL - 134 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Malic, E. A1 - Weber, C. A1 - Richter, M. A1 - Atalla, V. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Reich, Sebastian A1 - Knorr, A. T1 - Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches JF - Physical review letters N2 - The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.097401 SN - 0031-9007 VL - 106 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Floss, Gereon A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Laser-controlled switching of molecular arrays in an dissipative environment JF - Physical review : B, Condensed matter and materials physics N2 - The optical switching of molecular ensembles in a dissipative environment is a subject of various fields of chemical physics and physical chemistry. Here we try to switch arrays of molecules from a stable collective ground state to a state in which all molecules have been transferred to another stable higher-energy configuration. In our model switching proceeds through electronically excited intermediates which are coherently coupled to each other through dipolar interactions, and which decay incoherently within a finite lifetime by coupling to a dissipative environment. The model is quite general, but parameters are chosen to roughly resemble the all-trans -> all-cis isomerization of an array of azobenzene molecules on a surface. Using analytical and optimal control pulses and the concept of "laser distillation," we demonstrate that for various aggregates (dimers up to hexamers), controlled and complete switching should be possible. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevB.83.104301 SN - 1098-0121 VL - 83 IS - 10 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Wirth, Jonas A1 - Monturet, Serge A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Adsorption and (photo-) electrochemical splitting of water on rutile ruthenium dioxide JF - epl : a letters journal exploring the frontiers of physics N2 - In this work, the adsorption and splitting of the water molecule by light and/or an external potential is investigated in the frame of (photo-) electrochemical cells using a rutile ruthenium dioxide anode. With the help of periodic density functional calculations, the adsorbed structures of H(2)O and some radicals involved in the splitting process (O, OH, OOH) are obtained and compared with the available experimental results. On the basis of these electronic-structure calculations, we use a method to calculate the stability of the reaction intermediates and conclude on the thermodynamical possibility of the water splitting reaction at the surface. We demonstrate that a moderate overpotential of 0.64 V is required for the reaction to take place at the RuO(2)(110) surface. Y1 - 2011 U6 - https://doi.org/10.1209/0295-5075/93/68001 SN - 0295-5075 VL - 93 IS - 6 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Ehlert, Christopher A1 - Kröner, Dominik A1 - Saalfrank, Peter T1 - A combined quantum chemical/molecular dynamics study of X-ray photoelectron spectra of polyvinyl alcohol using oligomer models JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - X-ray photoelectron spectroscopy (XPS) is a powerful tool for probing the local chemical environment of atoms near surfaces. When applied to soft matter, such as polymers, XPS spectra are frequently shifted and broadened due to thermal atom motion and by interchain interactions. We present a combined quantum mechanical QM/molecular dynamics (MD) simulation of X-ray photoelectron spectra of polyvinyl alcohol (PVA) using oligomer models in order to account for and quantify these effects on the XPS (C1s) signal. In our study, molecular dynamics at finite temperature were performed with a classical forcefield and by ab initio MD (AIMD) using the Car-Parrinello method. Snapshots along, the trajectories represent possible conformers and/or neighbouring environments, with different C1s ionization potentials for individual C atoms leading to broadened XPS peaks. The latter are determined by Delta-Kohn Sham calculations. We also examine the experimental practice of gauging XPS (C1s) signals of alkylic C-atoms in C-containing polymers to the C1s signal of polyethylene. We find that (i) the experimental XPS (C1s) spectra of PVA (position and width) can be roughly represented by single-strand models, (ii) interchain interactions lead to red-shifts of the XPS peaks by about 0.6 eV, and (iii) AIMD simulations match the findings from classical MD semi-quantitatively. Further, (iv) the gauging procedure of XPS (C1s) signals to the values of PE, introduces errors of about 0.5 eV. (C) 2014 Elsevier B.V. All rights reserved. KW - Simulation of polymer XPS KW - Delta-Kohn Sham method KW - Thermal broadening effects KW - Interchain interactions KW - Classical MD KW - Poly vinyl alcohol Y1 - 2015 U6 - https://doi.org/10.1016/j.elspec.2014.12.007 SN - 0368-2048 SN - 1873-2526 VL - 199 SP - 38 EP - 45 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Stueker, Tony A1 - Saalfrank, Peter T1 - Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp(2)/sp(3) hybrid species with CQC double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp02615f SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 29 SP - 19656 EP - 19669 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Moldt, Thomas A1 - Przyrembel, Daniel A1 - Gahl, Cornelius A1 - Weinelt, Martin A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp03093e SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 27 SP - 18079 EP - 18086 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Lorenz, Ulf A1 - Saalfrank, Peter T1 - Measures for the non-Markovianity of a harmonic oscillator coupled to a discrete bath derived from numerically exact references JF - The European physical journal : D, Atomic, molecular, optical and plasma physics N2 - System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hart ree nietliod is used to provide a numerically converged solution of the system-bath Schrodinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems Tpically encountered in quantum optics; but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics. Y1 - 2015 U6 - https://doi.org/10.1140/epjd/e2014-50727-8 SN - 1434-6060 SN - 1434-6079 VL - 69 IS - 2 PB - Springer CY - New York ER - TY - JOUR A1 - Matis, Jochen Rene A1 - Schoenborn, Jan Boyke A1 - Saalfrank, Peter T1 - A multi-reference study of the byproduct formation for a ring-closed dithienylethene photoswitch JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Photodriven molecular switches are sometimes hindered in their performance by forming byproducts which act as dead ends in sequences of switching cycles, leading to rapid fatigue effects. Understanding the reaction pathways to unwanted byproducts is a prerequisite for preventing them. This article presents a study of the photochemical reaction pathways for byproduct formation in the photochromic switch 1,2-bis-(3-thienyl)-ethene. Specifically, using single-and multi-reference methods the post-deexcitation reaction towards the byproduct in the electronic ground state S-0 when starting from the S-1-S-0 conical intersection (CoIn), is considered in detail. We find an unusual low-energy pathway, which offers the possibility for the formation of a dyotropic byproduct. Several high-energy pathways can be excluded with high probability. Y1 - 2015 U6 - https://doi.org/10.1039/c5cp00987a SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 21 SP - 14088 EP - 14095 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Schulze, Michael A1 - Utecht, Manuel Martin A1 - Hebert, Andreas A1 - Rück-Braun, Karola A1 - Saalfrank, Peter A1 - Tegeder, Petra T1 - Reversible Photoswitching of the Interfacial Nonlinear Optical Response JF - The journal of physical chemistry letters N2 - Incorporating photochromic molecules into organic/inorganic hybrid materials may lead to photoresponsive systems. In such systems, the second-order nonlinear properties can be controlled via external stimulation with light at an appropriate wavelength. By creating photochromic molecular switches containing self-assembled monolayers on Si(111), we can demonstrate efficient reversible switching, which is accompanied by a pronounced modulation of the nonlinear optical (NLO) response of the system. The concept of utilizing functionalized photoswitchable Si surfaces could be a way for the generation of two-dimensional NLO switching materials, which are promising for applications in photonic and optoelectronic devices. Y1 - 2015 U6 - https://doi.org/10.1021/jz502477m SN - 1948-7185 VL - 6 IS - 3 SP - 505 EP - 509 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Götze, Jan A1 - Saalfrank, Peter T1 - Serine in BLUF domains displays spectral importance in computational models N2 - The BLUF (blue-light sensing using flavine) domain of the AppA photoreceptor protein from Rhodobacter sphaeroides was modelled by using quantum chemical chromophore plus amino acid models at the (TD-)B3LYP/6-31G* level of theory. The models were based on NMR structures, and further refined by CHARM force field molecular dynamics simulations. The goal is to explain the total redshift by about 10 nm in the UV/Vis spectra of BLUF domains after illumination, and to relate it to structural changes. For this purpose UV/Vis spectra of the available NMR structures were calculated and related to geometrical features. In particular, the hydrogen network embedding the central chromophore is discussed. Specifically, the position of a conserved glutamine, Q63, is found to be important in agreement with findings from previous works. Additionally, however, we find a systematic dependence also on the geometry of a conserved serine, S41. Based on a series of calculations with known structures and with artificial structural models, we argue that indeed the light-induced switching of both Q63 and S41 is necessary to explain the full similar to 10 nm redshift in the light (signalling) state of serine containing BLUF domains. Following or accompanying the double switching, two structurally highly important residues W104 and M106 exchange places, but do not affect the overall UV/ Vis properties of the chromophore. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/10111344 U6 - https://doi.org/10.1016/j.jphotobiol.2008.10.003 SN - 1011-1344 ER - TY - JOUR A1 - Dokic, Jadranka A1 - Gothe, Marcel A1 - Wirth, Jonas A1 - Peters, Maike V. A1 - Schwarz, Jutta A1 - Hecht, Stefan A1 - Saalfrank, Peter T1 - Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives : substituent effects, solvent effects, and comparison to experimental data N2 - Quantum chemical calculations of various azobenzene (AB) derivatives have been carried out with the goal to describe the energetics and kinetics of their thermal cis -> trans isomerization. The effects of substituents, in particular their type, number, and positioning, on activation energies have been systematically studied with the ultimate goal to tailor the switching process. Trends observed for mono- and disubstituted species are discussed. A polarizable continuum model is used to study, in an approximate fashion, the cis -> trans isomerization of azobenzenes in solution. The nature of the transition state(s) and its dependence on substituents and the environment is discussed. In particular for push-pull azobenzenes, the reaction mechanism is found to change from inversion in nonpolar solvents to rotation in polar solvents. Concerning kinetics, calculations based on the Eyring transition state theory give usually reliable activation energies and enthalpies when compared to experimentally determined values. Also, trends in the resulting rate constants are correct. Other computed properties such as activation entropies and thus preexponential rate factors are in only moderate agreement with experiment. Y1 - 2009 UR - http://pubs.acs.org/journal/jpcafh U6 - https://doi.org/10.1021/jp9021344 SN - 1089-5639 ER - TY - JOUR A1 - Klinkusch, Stefan A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Long-range intermolecular charge transfer induced by laser pulses : an explicitly time-dependent configuration interaction approach N2 - In this paper, we report simulations of laser-driven many-electron dynamics by means of the time-dependent configuration interaction singles (TD-CIS) approach. The method is capable of describing explicitly time-dependent phenomena beyond perturbation theory and is systematically improvable. In contrast to most time-dependent density functional methods it also allows us to treat long-range charge-transfer states properly. As an example, the laser-pulse induced charge transfer between a donor (ethylene) and an acceptor molecule (tetracyanoethylene, TCNE) is studied by means of TD-CIS. Also, larger aggregates consisting of several donors and/or acceptors are considered. It is shown that the charge distribution and hence the dipole moments of the systems under study are switchable by (a series of) laser pulses which induce selective, state-to-state electronic transitions. Y1 - 2009 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CP U6 - https://doi.org/10.1039/B817873a SN - 1463-9076 ER - TY - JOUR A1 - Andrianov, Ivan A1 - Saalfrank, Peter T1 - Theoretical study of vibration-phonon coupling of H adsorbed on a Si(100) surface N2 - In this paper a perturbation-theory study of vibrational lifetimes for the bending and stretching modes of hydrogen adsorbed on a Si(100) surface is presented. The hydrogen-silicon interaction is treated with a semiempirical bond-order potential. Calculations are performed for H-Si clusters of different sizes. The finite lifetime is due to vibration-phonon coupling, which is assumed to be linear or bilinear in the phonon and nonlinear in the H-Si stretching and bending modes. Lifetimes and vibrational transition rates are evaluated with one- and two-phonon processes taken into account. Temperature effects are also discussed. In agreement with the experiment and previous theoretical treatment it is found that the H-Si (upsilon(s)=1) stretching vibration decays on a nanosecond timescale, whereas for the H-Si (upsilon(b)=1) bending mode a picosecond decay is predicted. For higher-excited vibrations, simple scaling laws are found if the excitation energies are not too large. The relaxation mechanisms for the excited H-Si stretching and the H-Si bending modes are analyzed in detail. Y1 - 2006 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.2161191 SN - 0021-9606 ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Krause, Pascal A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Time-dependent response of dissipative electron systems N2 - We present a systematic study of the influence of energy and phase relaxation on dynamic polarizability simulations in the linear response regime. The nonperturbative approach is based on explicit electron dynamics using short laser pulses of low intensities. To include environmental effects on the property calculation, we use the time- dependent configuration-interaction method in its reduced density matrix formulation. Both energy dissipation and nonlocal pure dephasing are included. The explicit treatment of time-resolved electron dynamics gives access to the phase shift between the electric field and the induced dipole moment, which can be used to define a useful uncertainty measure for the dynamic polarizability. The nonperturbative treatment is compared to perturbation theory expressions, as applied to a simple model system, the rigid H-2 molecule. It is shown that both approaches are equivalent for low field intensities, but the time-dependent treatment provides complementary information on the phase of the induced dipole moment, which allows for the definition of an uncertainty associated with the computation of the dynamic polarizability in the linear response regime. Y1 - 2010 UR - http://pra.aps.org/ U6 - https://doi.org/10.1103/Physreva.81.063420 SN - 1050-2947 ER - TY - JOUR A1 - Beyvers, Stephanie A1 - Ohtsuki, Y A1 - Saalfrank, Peter T1 - Optimal control in a dissipative system : vibrational excitation of CO/Cu(100) by IR pulses N2 - The question as to whether state-selective population of molecular vibrational levels by shaped infrared laser pulses is possible in a condensed phase environment is of central importance for such diverse fields as time-resolved spectroscopy, quantum computing, or "vibrationally mediated chemistry." This question is addressed here for a model system, representing carbon monoxide adsorbed on a Cu(100) surface. Three of the six vibrational modes are considered explicitly, namely, the CO stretch vibration, the CO-surface vibration, and a frustrated translation. Optimized infrared pulses for state-selective excitation of "bright" and "dark" vibrational levels are designed by optimal control theory in the framework of a Markovian open-system density matrix approach, with energy flow to substrate electrons and phonons, phase relaxation, and finite temperature accounted for. The pulses are analyzed by their Husimi "quasiprobability" distribution in time-energy space. Y1 - 2006 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.2206593 SN - 0021-9606 ER - TY - JOUR A1 - Klinkusch, Stefan A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Laser-induced electron dynamics including photoionization : a heuristic model within time-dependent configuration interaction theory N2 - We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H-2 when calculated nonperturbatively by TD-CIS. Y1 - 2009 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.3218847 SN - 0021-9606 ER - TY - JOUR A1 - Krause, Pascal A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics : Controlled dipole switching in lithium cyanide N2 - We report simulations of laser-driven many-electron dynamics by means of the time-dependent configuration interaction singles (doubles) approach. The method accounts for the correlation of ground and excited states, is capable of describing explicitly time-dependent, nonlinear phenomena, and is systematically improvable. Lithium cyanide serves as a molecular test system in which the charge distribution and hence the dipole moment are shown to be switchable, in a controlled fashion, by (a series of) laser pulses which induce selective, state-to-state electronic transitions. One focus of our time-dependent calculations is the question of how fast the transition from the ionic ground state to a specific excited state that is embedded in a multitude of other states can be made, without creating an electronic wave packet. (c) 2005 American Institute of Physics Y1 - 2005 SN - 0021-9606 ER - TY - JOUR A1 - Andrianov, Igor V. A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Bovensiepen, U. A1 - Gahl, Cornelius A1 - Wolf, M. M. T1 - Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface N2 - Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent. (C) 2005 American Institute of Physics Y1 - 2005 SN - 0021-9606 ER - TY - JOUR A1 - Nacci, Christophe A1 - Foelsch, Stefan A1 - Zenichowski, Karl A1 - Dokic, Jadranka A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Current versus temperature-induced switching in a single-molecule tunnel junction : 1,5 cyclooctadiene on Si(001) N2 - The biconformational switching of single cyclooctadiene molecules chemisorbed on a Si(001) surface was explored by quantum chemical and quantum dynamical calculations and low-temperature scanning tunneling microscopy experiments. The calculations rationalize the experimentally observed switching driven by inelastic electron tunneling (IET) at 5 K. At higher temperatures, they predict a controllable crossover behavior between IET-driven and thermally activated switching, which is fully confirmed by experiment. Y1 - 2009 UR - http://pubs.acs.org/journal/nalefd U6 - https://doi.org/10.1021/Nl901419g SN - 1530-6984 ER - TY - JOUR A1 - Zenichowski, Karl A1 - Dokic, Jadranka A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Current versus temperature-induced switching of a single molecule - open-system density matrix theory for 1,5-cyclooctadiene on Si(100) JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - The switching of single cyclooctadiene molecules chemisorbed on a Si(100) surface between two stable conformations, can be achieved with a scanning tunneling microscope [Nacci , Phys. Rev. B 77, 121405(R) (2008)]. Recently, it was shown by quantum chemical and quantum dynamical simulations that major experimental facts can be explained by a single-mode model with switching enforced by inelastic electron tunneling (IET) excitations and perturbed by vibrational relaxation [Nacci , Nano Lett. 9, 2997 (2009)]. In the present paper, we extend the previous theoretical work in several respects: (1) The model is generalized to a two-mode description in which two C2H4 units of COD can move independently; (2) contributions of dipole and, in addition, (cation and anion) resonance-IET rates are considered; (3) the harmonic-linear vibrational relaxation model used previously is generalized to anharmonic vibrations. While the present models highlight generic aspects of IET-switching between two potential minima, they also rationalize specific experimental findings for COD/Si(100): (1) A single-electron excitation mechanism with a linear dependence of the switching rate on tunneling current I, (2) the capability to switch both at negative and positive sample biases, and (3) a crossover temperature around similar to 60 K from an IET-driven, T-independent atom tunneling regime, to classical over-the-barrier isomerization with exponential T-dependence at higher temperatures for a bias voltage of +1.5 V and an average tunneling current of 0.73 nA. Y1 - 2012 U6 - https://doi.org/10.1063/1.3692229 SN - 0021-9606 VL - 136 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Klaumünzer, Bastian A1 - Kröner, Dominik A1 - Lischka, Hans A1 - Saalfrank, Peter T1 - Non-adiabatic excited state dynamics of riboflavin after photoexcitation JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Flavins are chromophores in light-gated enzymes and therefore central in many photobiological processes. To unravel the optical excitation process as the initial, elementary step towards signal transduction, detailed ultrafast (femtosecond) experiments probing the photo-activation of flavins have been carried out recently [Weigel et al., J. Phys. Chem. B, 2011, 115, 3656-3680.]. The present paper contributes to a further understanding and interpretation of these experiments by studying the post-excitation vibrational dynamics of riboflavin (RF) and microsolvated riboflavin, RF center dot 4H(2)O, using first principles non-adiabatic molecular dynamics. By analyzing the characteristic atom motions and calculating time-resolved stimulated emission spectra following pi pi* excitation, it is found that after optical excitation C-N and C-C vibrations in the isoalloxazine rings of riboflavin set in. The Franck-Condon (vertically excited) state decays within about 10 fs, in agreement with experiment. Anharmonic coupling leads to Intramolecular Vibrational energy Redistribution (IVR) on the timescale of about 80-100 fs, first to (other) C-C stretching modes of the isoalloxazine rings, then by energy spread over the whole molecule, including low-frequency in-plane modes. The IVR is accompanied by a red-shift and broadening of the emission spectrum. When RF is microsolvated with four water molecules, an overall redshift of optical spectra by about 20 nm is observed but the relaxation dynamics is only slightly affected. For several trajectories, a tendency for hydrogen transfer from water to flavin-nitrogen (N-5) was found. Y1 - 2012 U6 - https://doi.org/10.1039/c2cp40978j SN - 1463-9076 VL - 14 IS - 24 SP - 8693 EP - 8702 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Selective excitation of molecule-surface vibrations in H2 and D2 dissociatively adsorbed on Ru(0001) JF - Israel journal of chemistry N2 - In this contribution we report about the selective vibrational excitation of H2 and D2 on Ru(0001) as an example for nonadiabatic coupling of an open quantum system to a dissipative environment. We investigate the possibility of achieving state-selective vibrational excitations of H2 and D2 adsorbed on a Ru(0001) surface using picosecond infrared laser pulses. The systems behavior is explored using pulses that are rationally designed and others that are optimized using a time-local variant of Optimal Control Theory. The effects of dissipation on the laser-driven dynamics are studied using the reduced-density matrix formalism. The non-adiabatic couplings between adsorbate and surface are computed perturbatively, for which our recently introduced state-resolved anharmonic rate model is used. It is shown that mode- and state-selective excitation can be achieved in the absence of dissipation when using optimized laser pulses. The inclusion of dissipation in the model reduces the state selectivity and the population transfer yield to highly excited states. In this case, mode activation is most effectively realized by a rational pulse of carefully chosen duration rather than by a locally optimized pulse. KW - dissipative dynamics KW - photochemistry KW - quantum control KW - surface chemistry Y1 - 2012 U6 - https://doi.org/10.1002/ijch.201100097 SN - 0021-2148 VL - 52 IS - 5 SP - 438 EP - 451 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Götze, Jan Philipp A1 - Saalfrank, Peter T1 - Quantum chemical modeling of the kinetic isotope effect of the carboxylation step in RuBisCO JF - Journal of molecular modeling N2 - Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most important enzyme for the assimilation of carbon into biomass, features a well-known isotope effect with regards to the CO2 carbon atom. This kinetic isotope effect alpha = k (12)/k (13) for the carboxylation step of the RuBisCO reaction sequence, and its microscopic origin, was investigated with the help of cluster models and quantum chemical methods [B3LYP/6-31G(d,p)]. We use a recently proposed model for the RuBisCO active site, in which a water molecule remains close to the reaction center during carboxylation of ribulose-1,5-bisphosphate [B. Kannappan, J.E. Gready, J. Am. Chem. Soc. 130 (2008), 15063]. Alternative active-site models and/or computational approaches were also tested. An isotope effect alpha for carboxylation is found, which is reasonably close to the one measured for the overall reaction, and which originates from a simple frequency shift of the bending vibration of (CO2)-C-12 compared to (CO2)-C-13. The latter is the dominant mode for the product formation at the transition state. KW - Cluster model KW - Dark reactions KW - Densityfunctional theory KW - Isotope effect KW - Photosynthesis KW - Quantum chemistry KW - RuBisCO Y1 - 2012 U6 - https://doi.org/10.1007/s00894-011-1207-0 SN - 1610-2940 VL - 18 IS - 5 SP - 1877 EP - 1883 PB - Springer CY - New York ER - TY - JOUR A1 - Floss, Gereon A1 - Saalfrank, Peter T1 - The Photoinduced E -> Z Isomerization of Bisazobenzenes: A Surface Hopping Molecular Dynamics Study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - The photoinduced E -> Z isomerization of azobenzene is a prototypical example of molecular switching. On the way toward rigid molecular rods such as those for opto-mechanical applications, multiazobenzene structures have been suggested in which several switching units are linked together within the same molecule (Bleger et al., J. Phys. Chem. B 2011, 115, 9930-9940). Large differences in the switching efficiency of multiazobenzenes have been observed, depending on whether the switching units are electronically decoupled or not. In this paper we study, on a time-resolved molecular level, the E -> Z isomerization of the simplest multiazobenzene, bisazobenzene (BAB). Two isomers (ortho- and para-BAB), differing only in the connectivity of two azo groups on a shared phenyl ring will be considered.To do so, nonadiabatic semiclassical dynamics after photo-excitation of the isomers are studied by employing an "on-the-fly", fewest switches surface hopping approach. States and couplings are calculated by Configuration Interaction (CI) based on a semiempirical (AM1) Hamiltonian (Persico and co-workers, Chem. Eur. J. 2004, 10, 2327-2341). In the case of para-BAB, computed quantum yields for photoswitching are drastically reduced compared to pristine azobenzene, due to electronic coupling of both switching units. A reason for this (apart from altered absorption spectra and reduced photochromicity) is the drastically reduced lifetimes of electronically excited states which are transiently populated. In contrast for meta-connected species, electronic subsystems are largely decoupled, and computed quantum yields are slightly higher than that for pristine azobenzene because of new isomerization channels. In this case we can also distinguish between single- and double-switch events and we find a cooperative effect: The isomerization of a single azo group is facilitated if the other azo group is already in the Z-configuration. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpca.5b02933 SN - 1089-5639 VL - 119 IS - 20 SP - 5026 EP - 5037 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Martinez-Mesa, Aliezer A1 - Saalfrank, Peter T1 - Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the "curse of dimensionality" encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0(+)) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given. (C) 2015 AIP Publishing LLC. Y1 - 2015 U6 - https://doi.org/10.1063/1.4919780 SN - 0021-9606 SN - 1089-7690 VL - 142 IS - 19 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wirth, Jonas A1 - Hatter, Nino A1 - Drost, Robert A1 - Umbach, Tobias R. A1 - Barja, Sara A1 - Zastrow, Matthias A1 - Rück-Braun, Karola A1 - Pascual, Jose Ignacio A1 - Saalfrank, Peter A1 - Franke, Katharina J. T1 - Diarylethene Molecules on a Ag(111) Surface: Stability and Electron-Induced Switching JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Diarylethene derivatives are photochromic molecular switches, undergoing a ring-opening/-closing reaction by illumination with light. The symmetry of the closed form is determined by the WoodWard Hoffinann rules according to which the reaction proceeds by corirotatory rotation -in that case. Here, we show by a cOrnbined approach of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations that the Open isomer of 4,4'-(4,4'-(perfluorocydopent-1-ene-1,2-diyl)bis(5-methyl-thiophent-4,2,4-dipyridine) (PDTE) retains its open form upon adsorption on a Ag(111) surface. It caribe switched into a closed form, which we identify as the digrotatOly cydization product, by controlled manipulation 'With the STM tip, Evidence of an electric-field dependent switching-process 'is interpreted on the basis of a Simple electroStatic Model, which suggests that the reaction proceedS via an "upright" intermediate state. This pathway thus strongly differs from the switching reaction in solution. Y1 - 2015 U6 - https://doi.org/10.1021/jp5122036 SN - 1932-7447 VL - 119 IS - 9 SP - 4874 EP - 4883 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Titov, Evgenii A1 - Lysyakova, Liudmila A1 - Lomadze, Nino A1 - Kabashin, Andrei V. A1 - Saalfrank, Peter A1 - Santer, Svetlana A. T1 - Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the experimental and theoretical investigation of a considerable increase in the rate for thermal cis -> trans isomerization of azobenzene-containing molecules in the presence of gold nanopartides. Experimentally, by means of UV vis spectroscopy, we studied a series of azobenzene-containing surfactants and 4-nitroazobenzene. We found that in the presence of gold,nanoparticles the thermal lifetime of the cis isomer of the azobenzenecontaining molecules was decreased by up to 3 orders of magnitude in comparison to the lifetime in solution without nanoparticles. The electron transfer between azobenzene-containing molecules and a surface of gold nanopartides is a possible reason to promote the thermal cis trans switching. To investigate the effect of electron attachment to, and withdrawal from, the azobenzene-containing molecules on the isomerization rate, we performed density functional theory calculations of activation energy barriers of the reaction together with Eyring's transition state theory calculations of the rates for azobenzene derivatives with donor and acceptor groups in para position of one of the phenyl rings, as well as for one of the azobenzene-containing surfactants. We found that activation barriers are greatly lowered for azobenzene-containing molecules, both upon electron attachment and withdrawal, which leads, in turn, to a dramatic increase in the thermal isomerization rate. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b02473 SN - 1932-7447 VL - 119 IS - 30 SP - 17369 EP - 17377 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Banerjee, Shiladitya A1 - Saalfrank, Peter T1 - Vibrationally resolved absorption, emission and resonance Raman spectra of diamondoids: a study based on time-dependent correlation functions JF - Physical chemistry, chemical physics : a journal of European Chemical Societies Y1 - 2014 U6 - https://doi.org/10.1039/c3cp53535e SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 1 SP - 144 EP - 158 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Lorenz, Ulf A1 - Saalfrank, Peter T1 - Comparing thermal wave function methods for multi-configuration time-dependent Hartree simulations (vol 140, 044106, 2014) T2 - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr Y1 - 2015 U6 - https://doi.org/10.1063/1.4938051 SN - 0021-9606 SN - 1089-7690 VL - 143 IS - 22 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Huber, C. A1 - Krause, Pascal T1 - Laser-driven electron dynamics at interfaces N2 - In this paper we present time-dependent, quantum-dynamical simulations of photoinduced processes at solid surfaces involving nonadiabatic transitions of electrons to and from short-lived intermediate excited states. In particular, two-photon photoemission (2PPE) spectra of naked metal surfaces and free-standing metal films are considered. One major problem in both cases is the presence of electron-electron scattering, which is treated here in various ways. The first way is to adopt an open-system density matrix approach, in which a single electron is weakly coupled to a "bath" of other electrons. The second approach is based on a many-electron Schrodinger equation, which is solved with the help of a time-dependent configuration interactions singles (TD-CIS) method Y1 - 2005 SN - 0021-2148 ER - TY - JOUR A1 - Kopf, A. A1 - Saalfrank, Peter T1 - Electron transport through molecules treated by LCAO-MO Green's functions with absorbing boundaries N2 - In this Letter, we present a method for calculating transport properties of molecular conductors using a time- independent scattering approach based on Green's functions with absorbing boundaries. The method, which has been used before for chemical reaction dynamics in a grid basis [Seideman, Miller, J. Chem. Phys. 96 (1992) 4412], is formulated here in an LCAO-MO form within simple Huckel theory and extended Huckel theory (EHT), respectively. Test calculations are for a quasi-one-dimensional atom chain. As a more realistic application, the organic molecules benzene- 1,4-dithiolate and biphenyl-4,4'-dithiolate between gold electrodes are studied. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0009-2614 ER - TY - JOUR A1 - Neiss, C. A1 - Saalfrank, Peter T1 - Molecular dynamics simulation of the LOV2 domain from Adiantum capillus-veneris N2 - The mechanism for signal transduction from the LOV-domains toward the kinase region of phototropin is still not well understood. We have performed molecular dynamics (MD) simulations and CONCOORD calculations on the LOV2 domain of Adiantum capillus-veneris, with the goal to detect possible differences between the two forms of the LOV domain which may not show up in the static crystal structures. Since no such clear differences are found in the MD simulations also, we suggest that the real, biologically active conformation of the LOV domain within the whole phototropin is different from the crystal structure of the isolated LOV domains. The MD simulations do offer, however, insight into details of the dynamics of the dark and illuminated LOV domains, which are discussed in the light of recent experiments Y1 - 2004 SN - 0095-2338 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Cleve, Ernst A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Jürgen T1 - Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement N2 - The [6.6](9,10)anthracenophane 1 (Scheme 1) is a selective fluoroionophore for the detection of PdCl2 with a large fluorescence enhancement factor (I/I-0 > 250). Y1 - 2010 UR - http://pubs.rsc.org/en/content/articlehtml/2010/cc/b919973j U6 - https://doi.org/10.1039/B919973j SN - 1359-7345 ER - TY - JOUR A1 - Nest, Mathias A1 - Saalfrank, Peter T1 - Enhancement of femtosecond-laser-induced molecular desorption by thin metal films N2 - We investigate femtosecond-laser induced desorption [desorption induced by multiple electronic transitions (DIMET)] of NO molecules from thin Pt(111) films. On the basis of a two-state, open-system density matrix treatment in combination with a two-temperature model, we argue that decreasing the film thickness enhances desorption cross sections by orders of magnitude in comparison to bulk materials. Both the spatial confinement and the laser fluence appear therefore as efficient, nonlinear enhancement factors for nonadiabatic photoreactions of metal surfaces and, possibly, of nanostructered materials in general Y1 - 2004 ER - TY - JOUR A1 - Nest, Mathias A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations N2 - We apply the multiconfiguration time-dependent Hartree-Fock method to electronic structure calculations and show that quantum chemical information can be obtained with this explicitly time-dependent approach. Different equations of motion are discussed, as well as the numerical cost. The two-electron integrals are calculated using a natural potential expansion, of which we describe the convergence behavior in detail Y1 - 2005 SN - 0021-9606 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Cleve, Ernst A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Jürgen T1 - Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement Y1 - 2010 UR - http://www.rsc.org/ej/CC/2010/b919973j.pdf SN - 1359-7345 ER - TY - JOUR A1 - Saalfrank, Peter T1 - Theory of photon- and STM-induced bond cleavage at surfaces N2 - In this contribution, recent advances in the theory of laser and, to a lesser extent, of scanning tunneling microscope (STM) induced cleavage of bonds between an adsorbate and a solid surface, will be reviewed. Special emphasis will be given to the quantum dynamics of electronically non-adiabatic reactions. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2004 SN - 1359-0286 ER - TY - JOUR A1 - Goetze, Jan P. A1 - Greco, Claudio A1 - Mitric, Roland A1 - Bonacic-Koutecky, Vlasta A1 - Saalfrank, Peter T1 - BLUF Hydrogen network dynamics and UV/Vis spectra: A combined molecular dynamics and quantum chemical study JF - JOURNAL OF COMPUTATIONAL CHEMISTRY N2 - Blue light sensing using flavin (BLUF) protein photoreceptor domains change their hydrogen bond network after photoexcitation. To explore this phenomenon, BLUF domains from R. sphaeroides were simulated using Amber99 molecular dynamics (MD). Five starting configurations were considered, to study different BLUF proteins (AppA/BlrB), Trp conformations (Win/Wout), structure determination (X-ray/NMR), and finally, His protonation states. We found dependencies of the hydrogen bonds on almost all parameters. Our data show an especially strong correlation of the Trp position and hydrogen bonds involving Gln63. The latter is in some contradiction to earlier results (Obanayama et al., Photochem. Photobiol. 2008, 84 10031010). Possible origins and implications are discussed. Our calculations support conjectures that Gln63 is more flexible with Trp104 in Win position. Using snapshots from MD and time-dependent density functional theory, UV/vis spectra for the chromophore were determined, which account for molecular motion of the protein under ambient conditions. In accord with experiment, it is found that the UV/vis spectra of BLUF bound flavin are red-shifted and thermally broadened for all calculated p ? p* transitions, relative to gas phase flavin at T = 0 K. However, differences in the spectra between the various BLUF configurations cannot be resolved with the present approach. (c) 2012 Wiley Periodicals, Inc. KW - blue-light sensor KW - flavin KW - molecular dynamics KW - TD-DFT KW - BLUF domains Y1 - 2012 U6 - https://doi.org/10.1002/jcc.23056 SN - 0192-8651 VL - 33 IS - 28 SP - 2233 EP - 2242 PB - WILEY-BLACKWELL CY - HOBOKEN ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Schubert, Marcel A1 - Howard, Ian A1 - Klaumünzer, Bastian A1 - Schilling, Kristian A1 - Chen, Zhihua A1 - Saalfrank, Peter A1 - Laquai, Frederic A1 - Facchetti, Antonio A1 - Neher, Dieter T1 - Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology JF - Journal of the American Chemical Society N2 - We explore the photophysics of P(NDI2OD-T2), a high-mobility and air-stable n-type donor/acceptor polymer. Detailed steady-state UV-vis and photoluminescence (PL) measurements on solutions of P(NDI2OD-T2) reveal distinct signatures of aggregation. By performing quantum chemical calculations, we can assign these spectral features to unaggregated and stacked polymer chains. NMR measurements independently confirm the aggregation phenomena of P(NDI2OD-T2) in solution. The detailed analysis of the optical spectra shows that aggregation is a two-step process with different types of aggregates, which we confirm by time-dependent PL measurements. Analytical ultracentrifugation measurements suggest that aggregation takes place within the single polymer chain upon coiling. By transferring these results to thin P(NDI2OD-T2) films, we can conclude that film formation is mainly governed by the chain collapse, leading in general to a high aggregate content of similar to 45%. This process also inhibits the formation of amorphous and disordered P(NDI2OD-T2) films. Y1 - 2012 U6 - https://doi.org/10.1021/ja306844f SN - 0002-7863 VL - 134 IS - 44 SP - 18303 EP - 18317 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Füchsel, Gernot A1 - Saalfrank, Peter T1 - Excitation, relaxation, and quantum diffusion of CO on copper JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the effect of intermode coupling and anharmonicity on the excitation and relaxation dynamics of CO on Cu(100). The nonadiabatic coupling of the adsorbate to the surface is treated perturbatively using a position-dependent state-resolved transition rate model. Using the potential energy surface of Marquardt et al. [J. Chem. Phys. 132, 074108 (2010)], which provides an accurate description of intermode interactions, we propose a four-dimensional model that represents simultaneously the diffusion and the desorption of the adsorbate. The system is driven by both rational and optimized infrared laser pulses to favor either selective mode and state excitations or lateral displacement along the diffusion coordinate. The dissipative dynamics is simulated using the reduced density matrix in its Lindblad form. We show that coupling between the degrees of freedom, mediated by the creation and annihilation of electron-hole pairs in the metal substrate, significantly affects the system excitation and relaxation dynamics. In particular, the angular degrees of freedom appear to play an important role in the energy redistribution among the molecule-surface vibrations. We also show that coherent excitation using simple IR pulses can achieve population transfer to a specific target to some extent but does not allow enforcement of the directionality to the diffusion motion. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.045438 SN - 1098-0121 SN - 1550-235X VL - 86 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zenichowski, Karl A1 - Nacci, Ch A1 - Fölsch, S. A1 - Dokic, Jadranka A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - STM-switching of organic molecules on semiconductor surfaces: an above threshold density matrix model for 1,5 cyclooctadiene on Si(100) JF - Journal of physics : Condensed matter N2 - The scanning tunnelling microscope (STM)-induced switching of a single cyclooctadiene molecule between two stable conformations chemisorbed on a Si(100) surface is investigated using an above threshold model including a neutral ground state and an ionic excited state potential. Switching was recently achieved experimentally with an STM operated at cryogenic temperatures (Nacci et al 2008 Phys. Rev. B 77 121405(R)) and rationalized by a below threshold model using just a single potential energy surface (Nacci et al 2009 Nano Lett. 9 2997). In the present paper, we show that experimental key findings on the inelastic electron tunnelling (IET) switching can also be rationalized using an above threshold density matrix model, which includes, in addition to the neutral ground state potential, an anionic or cationic excited potential. We use one and two-dimensional potential energy surfaces. Furthermore, the influence of two key parameters of the density matrix description, namely the electronic lifetime of the ionic resonance and the vibrational lifetimes, on the ground state potential are discussed. Y1 - 2012 U6 - https://doi.org/10.1088/0953-8984/24/39/394009 SN - 0953-8984 VL - 24 IS - 39 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bronner, C. A1 - Leyssner, F. A1 - Stremlau, S. A1 - Utecht, Manuel Martin A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, P. T1 - Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion JF - Physical review : B, Condensed matter and materials physics N2 - Angle-resolved two-photon photoemission and high-resolution electron energy loss spectroscopy are employed to derive the electronic structure of a subnanometer atomically precise quasi-one-dimensional graphene nanoribbon (GNR) on Au(111). We resolved occupied and unoccupied electronic bands including their dispersion and determined the band gap, which possesses an unexpectedly large value of 5.1 eV. Supported by density functional theory calculations for the idealized infinite polymer and finite size oligomers, an unoccupied nondispersive electronic state with an energetic position in the middle of the band gap of the GNR could be identified. This state resides at both ends of the ribbon (end state) and is only found in the finite sized systems, i.e., the oligomers. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.085444 SN - 1098-0121 VL - 86 IS - 8 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Frischkorn, C. T1 - Concept of a single temperature for highly nonequilibrium laser-induced hydrogen desorption from a ruthenium surface JF - Physical review letters N2 - Laser-induced condensed phase reactions are often interpreted as nonequilibrium phenomena that go beyond conventional thermodynamics. Here, we show by Langevin dynamics and for the example of femtosecond-laser desorption of hydrogen from a ruthenium surface that light adsorbates thermalize rapidly due to ultrafast energy redistribution after laser excitation. Despite the complex reaction mechanism involving hot electrons in the surface region, all desorption product properties are characterized by equilibrium distributions associated with a single, unique temperature. This represents an example of ultrahot chemistry on the subpicosecond time scale. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.109.098303 SN - 0031-9007 VL - 109 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Bronner, Christopher A1 - Utecht, Manuel Martin A1 - Haase, Anton A1 - Saalfrank, Peter A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the surface-assisted formation of a graphene nanoribbon JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - High conductivity and a tunability of the band gap make quasi-one-dimensional graphene nanoribbons (GNRs) highly interesting materials for the use in field effect transistors. Especially bottom-up fabricated GNRs possess well-defined edges which is important for the electronic structure and accordingly the band gap. In this study we investigate the formation of a sub-nanometer wide armchair GNR generated on a Au(111) surface. The on-surface synthesis is thermally activated and involves an intermediate non-aromatic polymer in which the molecular precursor forms polyanthrylene chains. Employing angle-resolved two-photon photoemission in combination with density functional theory calculations we find that the polymer exhibits two dispersing states which we attribute to the valence and the conduction band, respectively. While the band gap of the non-aromatic polymer obtained in this way is relatively large, namely 5.25 +/- 0.06 eV, the gap of the corresponding aromatic GNR is strongly reduced which we attribute to the different degree of electron delocalization in the two systems. Y1 - 2014 U6 - https://doi.org/10.1063/1.4858855 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 2 PB - American Institute of Physics CY - Melville ER -