TY - JOUR A1 - Srama, Ralf A1 - Ahrens, Thomas J. A1 - Altobelli, Nicolas A1 - Auer, S. A1 - Bradley, J. G. A1 - Burton, M. A1 - Dikarev, V. V. A1 - Economou, T. A1 - Fechtig, Hugo A1 - Görlich, M. A1 - Grande, M. A1 - Graps, Amara A1 - Grün, Eberhard A1 - Havnes, Ove A1 - Helfert, Stefan A1 - Horanyi, Mihaly A1 - Igenbergs, E. A1 - Jessberger, Elmar K. A1 - Johnson, T. V. A1 - Kempf, Sascha A1 - Krivov, Alexander v. A1 - Krüger, Harald A1 - Mocker-Ahlreep, Anna A1 - Moragas-Klostermeyer, Georg A1 - Lamy, Philippe A1 - Landgraf, Markus A1 - Linkert, Dietmar A1 - Linkert, G. A1 - Lura, F. A1 - McDonnell, J. A. M. A1 - Moehlmann, Dirk A1 - Morfill, Gregory E. A1 - Muller, M. A1 - Roy, M. A1 - Schafer, G. A1 - Schlotzhauer, G. A1 - Schwehm, Gerhard H. A1 - Spahn, Frank A1 - Stübig, M. A1 - Svestka, Jiri A1 - Tschernjawski, V T1 - The Cassini Cosmic Dust Analyzer N2 - The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10(-19) and 10(-9) kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic held on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption. The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and I I dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as I impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps Y1 - 2004 SN - 0038-6308 ER - TY - JOUR A1 - Srama, Ralf A1 - Kempf, S. A1 - Moragas-Klostermeyer, Georg A1 - Helfert, S. A1 - Ahrens, T. J. A1 - Altobelli, N. A1 - Auer, S. A1 - Beckmann, U. A1 - Bradley, J. G. A1 - Burton, M. A1 - Dikarev, V. V. A1 - Economou, T. A1 - Fechtig, H. A1 - Green, S. F. A1 - Grande, M. A1 - Havnes, O. A1 - Hillierf, J.K. A1 - Horanyii, M. A1 - Igenbergsj, E. A1 - Jessberger, E. K. A1 - Johnson, T. V. A1 - Krüger, H. A1 - Matt, G. A1 - McBride, N. A1 - Mocker, A. A1 - Lamy, P. A1 - Linkert, D. A1 - Linkert, G. A1 - Lura, F. A1 - McDonnell, J.A.M. A1 - Möhlmann, D. A1 - Morfill, G. E. A1 - Postberg, F. A1 - Roy, M. A1 - Schwehm, G.H. A1 - Spahn, Frank A1 - Svestka, J. A1 - Tschernjawski, V. A1 - Tuzzolino, A. J. A1 - Wäsch, R. A1 - Grün, E. T1 - In situ dust measurements in the inner Saturnian system JF - Planetary and space science N2 - In July 2004 the Cassini–Huygens mission reached the Saturnian system and started its orbital tour. A total of 75 orbits will be carried out during the primary mission until August 2008. In these four years Cassini crosses the ring plane 150 times and spends approx. 400 h within Titan's orbit. The Cosmic Dust Analyser (CDA) onboard Cassini characterises the dust environment with its extended E ring and embedded moons. Here, we focus on the CDA results of the first year and we present the Dust Analyser (DA) data within Titan's orbit. This paper does investigate High Rate Detector data and dust composition measurements. The authors focus on the analysis of impact rates, which were strongly variable primarily due to changes of the spacecraft pointing. An overview is given about the ring plane crossings and the DA counter measurements. The DA dust impact rates are compared with the DA boresight configuration around all ring plane crossings between June 2004 and July 2005. Dust impacts were registered at altitudes as high as 100 000 km above the ring plane at distances from Saturn between 4 and 10 Saturn radii. In those regions the dust density of particles bigger than 0.5 can reach values of 0.001m-3. KW - Cassini KW - dust KW - CDA KW - E-ring KW - water ice Y1 - 2006 U6 - https://doi.org/10.1016/j.pss.2006.05.021 SN - 0032-0633 VL - 54 IS - 9-10 SP - 967 EP - 987 PB - Elsevier CY - Oxford ER -