TY - JOUR A1 - Sun, Fu A1 - Osenberg, Markus A1 - Dong, Kang A1 - Zhou, Dong A1 - Hilger, Andre A1 - Jafta, Charl J. A1 - Risse, Sebastian A1 - Lu, Yan A1 - Markoetter, Henning A1 - Manke, Ingo T1 - Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems BT - Investigated by Synchrotron X-ray Phase Contrast Tomography JF - ACS energy letters / American Chemical Society N2 - Efficient Li utilization is generally considered to be a prerequisite for developing next-generation energy storage systems (ESSs). However, uncontrolled growth of Li microstructures (LmSs) during electrochemical cycling has prevented its practical commercialization. Herein, we attempt to understand the correlation of morphological evolution of Li electrodes with degrading electrochemical performances of Li/LiCoO2 and Li/S systems by synchrotron X-ray phase contrast tomography technique. It was found that the continuous transformation of the initial dense Li bulk to a porous lithium interface (PL1) structure intimately correlates with the gradually degrading overall cell performance of these two systems. Additionally, the formation mechanism of the PLI and its correlation with previously reported inwardly growing LmS and the lithium-reacted region have been intensively discussed. The information that we gain herein is complementary to previous investigations and may provide general insights into understanding of degradation mechanisms of Li metal anodes and also provide highly needed guidelines for effective design of reliable next-generation Li metal-based ESSs. Y1 - 2018 U6 - https://doi.org/10.1021/acsenergylett.7b01254 SN - 2380-8195 VL - 3 IS - 2 SP - 356 EP - 365 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Sun, Fu A1 - Dong, Kang A1 - Osenberg, Markus A1 - Hilger, Andre A1 - Risse, Sebastian A1 - Lu, Yan A1 - Kamm, Paul H. A1 - Klaus, Manuela A1 - Markoetter, Henning A1 - Garcia-Moreno, Francisco A1 - Arlt, Tobias A1 - Manke, Ingo T1 - Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Dynamic and direct visualization of interfacial evolution is helpful in gaining fundamental knowledge of all-solid-state-lithium battery working/degradation mechanisms and clarifying future research directions for constructing next-generation batteries. Herein, in situ and in operando synchrotron X-ray tomography and energy dispersive diffraction were simultaneously employed to record the morphological and compositional evolution of the interface of InLi-anode|sulfide-solid-electrolyte during battery cycling. Compelling morphological evidence of interfacial degradation during all-solid-state-lithium battery operation has been directly visualized by tomographic measurement. The accompanying energy dispersive diffraction results agree well with the observed morphological deterioration and the recorded electrochemical performance. It is concluded from the current investigation that a fundamental understanding of the phenomena occurring at the solid-solid electrode|electrolyte interface during all-solid-state-lithium battery cycling is critical for future progress in cell performance improvement and may determine its final commercial viability. Y1 - 2018 U6 - https://doi.org/10.1039/c8ta08821g SN - 2050-7488 SN - 2050-7496 VL - 6 IS - 45 SP - 22489 EP - 22496 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - Risse, Sebastian A1 - Wache, Remi A1 - Kofod, Guggi T1 - Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles JF - Advanced materials N2 - Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100% actuation strain and capacity strain sensitivity up to 300%. KW - soft electrical connections KW - stretchable electronics KW - elastic conductor KW - compliant electrodes Y1 - 2013 U6 - https://doi.org/10.1002/adma.201202728 SN - 0935-9648 VL - 25 IS - 4 SP - 578 EP - 583 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Risse, Sebastian T1 - Physical properties of dipole filled silicones for dielectric elastomer actuators Y1 - 2012 CY - Potsdam ER - TY - JOUR A1 - Risse, Sebastian A1 - Kussmaul, Björn A1 - Krüger, Hartmut A1 - Kofod, Guggi T1 - A versatile method for enhancement of electromechanical sensitivity of silicone elastomers JF - RSC Advances N2 - Dielectric elastomer actuators (DEAs) draw their function from their dielectric and mechanical properties. The paper describes the fabrication and various properties of molecularly grafted silicone elastomer films. This was achieved by addition of high-dipole molecular co-substituents to off-the-shelf silicone elastomer kits, Elastosil RT 625 and Sylgard 184 by Wacker and Dow Corning, respectively. Strong push-pull dipoles were chemically grafted to both polymer networks during a one step film formation process. All manufactured films were characterized using (13) C-NMR and FT-IR spectroscopy, confirming a successful attachment of the dipoles to the silicone network. Differential scanning calorimetry (DSC) results showed that grafted dipoles were distributed homogeneously throughout the material avoiding the formation of nano-scale aggregates. The permittivity increased with the amount of dipole at all frequencies, while the Young's modulus and electrical breakdown strength were reduced. Actuation strain measurements in the pure shear configuration independently confirmed the increase in electromechanical sensitivity. The ability to enhance electromechanical properties of off-the-shelf materials could strongly expand the range of actuator properties available to researchers and end-users. Y1 - 2012 U6 - https://doi.org/10.1039/c2ra21541a SN - 2046-2069 VL - 2 IS - 24 SP - 9029 EP - 9035 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kofod, Guggi A1 - Risse, Sebastian A1 - Stoyanov, Hristiyan A1 - McCarthy, Denis N. A1 - Sokolov, Sergey A1 - Krähnert, Ralph T1 - Broad-spectrum enhancement of polymer composite dielectric constant at ultra low volume fractions of silica-supported copper nanoparticles JF - ACS nano N2 - A new strategy for the synthesis of high permittivity polymer composites is demonstrated based on well-defined spatial distribution of ultralow amounts of conductive nanoparticles. The spatial distribution Was realized by immobilizing Cu nanoparticles within the pore system of Alia microspheres, preventing direct contact between individual Cu particles. Both Cu-loaded and unloaded silica microspheres were-then used as fillers in polymer composites prepared with thermoplastic SEBS rubber is the matrix. With a metallic Cu content of about 0.26 vol % In the compoilte, a relative increase of 94% In real permittivity was obtained. No Cu-induced relaxations were observed in the dielectric spectrum within the studied frequency range of 0.1 Hz to 1 MHz. When related to the amount of conductive nanoparticles, the obtained composites achieve the highest broad spectrum enhancement of permittivity ever reported for a polymer based composite. KW - nanocomposite KW - broad-spectrum permittivity enhancement KW - metal nanoparticles KW - uniform spatial arrangement Y1 - 2011 U6 - https://doi.org/10.1021/nn103097q SN - 1936-0851 VL - 5 IS - 3 SP - 1623 EP - 1629 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Risse, Sebastian A1 - Kussmaul, Bjoern A1 - Krüger, Hartmut A1 - Kofod, Guggi T1 - Synergistic improvement of actuation properties with compatibilized high permittivity filler JF - Advanced functional materials N2 - Electroactive polymers can be used for actuators with many desirable features, including high electromechanical energy density, low weight, compactness, direct voltage control, and complete silence during actuation. These features may enable personalized robotics with much higher ability to delicately manipulate their surroundings than can be achieved with currently available actuators; however, much work is still necessary to enhance the electroactive materials. Electric field-driven actuator materials are improved by an increase in permittivity and by a reduction in stiffness. Here, a synergistic enhancement method based on a macromolecular plasticizing filler molecule with a combination of both high dipole moment and compatibilizer moieties, synthesized to simultaneously ensure improvement of electromechanical properties and compatibility with the host matrix is presented. Measurements show an 85% increase in permittivity combined with 290% reduction in mechanical stiffness. NMR measurements confirm the structure of the filler while DSC measurements confirm that it is compatible with the host matrix at all the mixture ratios investigated. Actuation strain measurements in the pure shear configuration display an increase in sensitivity to the electrical field of more than 450%, confirming that the filler molecule does not only improve dielectric and mechanical properties, it also leads to a synergistic enhancement of actuation properties by simple means. KW - allycyanide KW - silicone-based dielectric elastomer actuators KW - permittivity enhancement KW - compatibilized filler molecules Y1 - 2012 U6 - https://doi.org/10.1002/adfm.201200320 SN - 1616-301X VL - 22 IS - 18 SP - 3958 EP - 3962 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Stoyanov, Hristiyan A1 - Kollosche, Matthias A1 - Risse, Sebastian A1 - McCarthy, Denis N. A1 - Kofod, Guggi T1 - Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control JF - Soft matter N2 - Soft, physically crosslinking, block copolymer elastomers were filled with surface-treated nanoparticles, in order to evaluate the possibility for improvement of their properties when used as soft dielectric actuators. The nanoparticles led to improvements in dielectric properties, however they also reinforced the elastomer matrix. Comparing dielectric spectra of composites with untreated and surface-treated particles showed a measurable influence of the surface on the dielectric loss behaviour for high filler amounts, strongly indicating an improved host-guest interaction for the surface-treated particles. Breakdown strength was measured using a test bench and was found to be in good agreement with the results from the actuation measurements. Actuation responses predicted by a model for prestrained actuators agreed well with measurements up to a filler amount of 20%(vol). Strong improvements in actuation behaviour were observed, with an optimum near 15%(vol) nanoparticles, corresponding to a reduction in electrical field of 27% for identical actuation strains. The use of physically crosslinking elastomer ensured the mechanical properties of the matrix elastomer were unchanged by nanoparticles effecting the crosslinking reaction, contrary to similar experiments performed with chemically crosslinking elastomers. This allows for a firm conclusion about the positive effects of surface-treated nanoparticles on actuation behavior. Y1 - 2011 U6 - https://doi.org/10.1039/c0sm00715c SN - 1744-683X SN - 1744-6848 VL - 7 IS - 1 SP - 194 EP - 202 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kussmaul, Björn A1 - Risse, Sebastian A1 - Wegener, Michael A1 - Kofod, Guggi A1 - Krüger, Hartmut T1 - Matrix stiffness dependent electro-mechanical response of dipole grafted silicones JF - Smart materials and structures N2 - The properties of dielectric elastomer actuators can be optimized by modifying the dielectric or mechanical properties of the dielectric elastomer. This paper presents the simultaneous control of both dielectric and mechanical properties, in a silicone elastomer network comprising cross-linker, chains and grafted molecular dipoles. Chains with two different molecular weights were each combined with varying amounts of grafted dipole. Chemical and physical characterization showed that networks with stoichiometric control of cross-linking density and permittivity were obtained, and that longer chain lengths resulted in higher electrical field response due to the reduction in cross-linking density and correspondingly in mechanical stiffness. Both actuation sensitivities were enhanced by 6.3 and 4.6 times for the short and long chain matrix material, respectively. Y1 - 2012 U6 - https://doi.org/10.1088/0964-1726/21/6/064005 SN - 0964-1726 VL - 21 IS - 6 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wache, Remi A1 - McCarthy, Denis N. A1 - Risse, Sebastian A1 - Kofod, Guggi T1 - Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design JF - IEEE ASME transactions on mechatronics N2 - This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved. KW - Dielectric elastomer actuator (DEA) KW - electroactive polymer KW - rotation Y1 - 2015 U6 - https://doi.org/10.1109/TMECH.2014.2301633 SN - 1083-4435 SN - 1941-014X VL - 20 IS - 2 SP - 975 EP - 977 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER -