TY - JOUR A1 - Riesch, Rüdiger A1 - Schlupp, Ingo A1 - Tobler, Michael A1 - Plath, Martin T1 - Reduction of the association preference for conspecifics in cave-dwelling Atlantic mollies, Poecilia mexicana JF - Behavioral ecology and sociobiology N2 - Cave animals are widely recognised as model organisms to study regressive evolutionary processes like the reduction of eyes. In this paper, we report on the regressive evolution of species discrimination in the cave molly, Poecilia mexicana, which, unlike other cave fishes, still has functional eyes. This allowed us to examine the response to both visual and non-visual cues involved in species discrimination. When surface-dwelling females were given a chance to associate with either a conspecific or a swordtail (Xiphophorus hellerii) female, they strongly preferred the conspecific female both when multiple cues and when solely visual cues were available to the female. No association preference was observed when only non-visual cues were provided. In contrast, cave-dwelling females showed no preference under all testing conditions, suggesting that species recognition mechanisms have been reduced. We discuss the role of species discrimination in relation to habitat differences. KW - cave fish KW - Poeciliidae KW - Xiphophorus KW - shoaling KW - species recognition Y1 - 2006 U6 - https://doi.org/10.1007/s00265-006-0223-z SN - 0340-5443 VL - 60 SP - 794 EP - 802 PB - Springer CY - New York ER - TY - JOUR A1 - Tobler, Michael A1 - Schlupp, Ingo A1 - Heubel, Katja U. A1 - Riesch, Rudiger A1 - Garcia de Leon, Francisco J. A1 - Giere, Olav A1 - Plath, Martin T1 - Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters JF - Extremophiles : life under extreme conditions N2 - Most eucaryotic organisms classified as living in an extreme habitat are invertebrates. Here we report of a fish living in a Mexican cave (Cueva del Azufre) that is rich in highly toxic H2S. We compared the water chemistry and fish communities of the cave and several nearby surface streams. Our study revealed high concentrations of H2S in the cave and its outflow (El Azufre). The concentrations of H2S reach more than 300 mu M inside the cave, which are acutely toxic for most fishes. In both sulfidic habitats, the diversity of fishes was heavily reduced, and Poecilia mexicana was the dominant species indicating that the presence of H2S has an all-or-none effect, permitting only few species to survive in sulfidic habitats. Compared to habitats without H2S, P. mexicana from the cave and the outflow have a significantly lower body condition. Although there are microhabitats with varying concentrations of H2S within the cave, we could not find a higher fish density in areas with lower concentrations of H2S. We discuss that P. mexicana is one of the few extremophile vertebrates. Our study supports the idea that extreme habitats lead to an impoverished species diversity. KW - extremophile teleosts KW - Poecilia mexicana KW - cave fish KW - hypoxia KW - chemoautotrophy KW - condition factor Y1 - 2006 U6 - https://doi.org/10.1007/s00792-006-0531-2 SN - 1431-0651 VL - 10 SP - 577 EP - 585 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Riesch, Rüdiger A1 - Tobler, Michael A1 - Plath, Martin A1 - Schlupp, Ingo T1 - Offspring number in a livebearing fish (Poecilia mexicana, Poeciliidae) : reduced fecundity and reduced plasticity in a population of cave mollies N2 - Life history traits within species often vary among different habitats. We measured female fecundity in mollies (Poecilia mexicana) from a H2S-rich cave and from a neighbouring surface habitat, as well as in laboratory-reared individuals of both populations raised in either light or continuous darkness. Compared to conspecifics from surface habitats, cave-dwelling P. mexicana had reduced fecundity (adjusted for size) in the field. In the laboratory, the fecundity of surface mollies was higher in light than in darkness, whereas fecundity in the cave mollies was almost unaffected by the ambient light conditions. Our results suggest a heritable component to the reduction in fecundity in female cave mollies. Moreover, the reduced plasticity in fecundity of cave mollies in response to light conditions might be an example of genetic assimilation or channelling of a life history trait in a population invading a new environment. Y1 - 2009 UR - http://www.springerlink.com/content/102877 U6 - https://doi.org/10.1007/s10641-008-9392-0 SN - 0378-1909 ER - TY - JOUR A1 - Riesch, Rüdiger A1 - Duwe, Virginia A1 - Herrmann, Nina A1 - Padur, Lisa A1 - Ramm, Annemarie A1 - Scharnweber, Inga Kristin A1 - Schulte, Matthias A1 - Schulz-Mirbach, Tanja A1 - Ziege, Madlen A1 - Plath, Martin T1 - Variation along the shy-bold continuum in extremophile fishes (Poecilia mexicana, Poecilia sulphuraria) N2 - One potential trade-off that bold individuals face is between increased predation risks and gains in resources. Individuals experiencing high predation and hungry individuals (or individuals with low body condition) are predicted to show increased boldness. We examined one behavioral trait previously reported to be associated with boldness (the time individual fish needed to emerge from shelter) in various populations of mollies (Poecilia spp.). Our study system included several southern Mexican surface streams with high piscine predation and high food availability, sulfidic surface streams with high avian predation, in which the inhabiting fish show reduced body condition, and a sulfidic cave, where predation and body condition are low. Our comparison revealed very short times to emerge from the start box in populations from non-sulfidic streams. In sulfidic habitats (whether surface or cave), it took individual Poecilia mexicana considerably longer to emerge from the start box, and the same difference was also found in an independent comparison between P. mexicana and the closely related, highly sulfide-adapted Poecilia sulphuraria. Fish reared under common garden conditions (in the absence of predators and hydrogen sulfide) showed intermediate boldness scores to the extremes observed in the field. Our data thus indicate that (a) boldness is shaped by environmental conditions/ experiential effects, but is not heritable, (b) predation affects boldness in the predicted direction, but (c) low body condition leads to reduced boldness. Extremophile Poecilia spp. spend most of their time surfacing to survive under sulfidic and hypoxic conditions, which exposes them to increased levels of predations, but the fish forage on the bottom. Hence, in this system, increased boldness does not increase foraging success. We argue that energy limitation favors reducing energetically costly behaviors, and exploring novel environments may be just one of them. Y1 - 2009 UR - http://www.springerlink.com/content/100464 U6 - https://doi.org/10.1007/s00265-009-0780-z SN - 0340-5443 ER - TY - GEN A1 - Plath, Martin A1 - Hermann, Bernd A1 - Schröder, Christine A1 - Riesch, Rüdiger A1 - Tobler, Michael A1 - García de León, Francisco J. A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event N2 - Background: Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results: Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions: The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 162 Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48599 ER - TY - GEN A1 - Bierbach, David A1 - Schulte, Matthias A1 - Herrmann, Nina A1 - Tobler, Michael A1 - Stadler, Stefan A1 - Jung, Christian T. A1 - Kunkel, Benjamin A1 - Riesch, Rüdiger A1 - Klaus, Sebastian A1 - Ziege, Madlen A1 - Indy, Jeane Rimber A1 - Arias-Rodriguez, Lenin A1 - Plath, Martin T1 - Predator-induced changes of female mating preferences BT - innate and experiential effects T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 984 KW - sexual selection KW - female choice KW - non-independent mate choice KW - predator recognition KW - Poecilia mexicana Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431099 SN - 1866-8372 IS - 984 ER - TY - JOUR A1 - Bierbach, David A1 - Schulte, Matthias A1 - Herrmann, Nina A1 - Tobler, Michael A1 - Stadler, Stefan A1 - Jung, Christian T. A1 - Kunkel, Benjamin A1 - Riesch, Rüdiger A1 - Klaus, Sebastian A1 - Ziege, Madlen A1 - Rimber Indy, Jeane A1 - Arias-Rodriguez, Lenin A1 - Plath, Martin T1 - Predator-induced changes of female mating preferences innate and experiential effects JF - BMC evolutionary biology N2 - Background: In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results: In dichotomous choice tests predator-naive (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions: Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. KW - Sexual selection KW - female choice KW - non-independent mate choice KW - predator recognition KW - Poecilia mexicana Y1 - 2011 U6 - https://doi.org/10.1186/1471-2148-11-190 SN - 1471-2148 VL - 11 IS - 3-4 PB - BioMed Central CY - London ER - TY - JOUR A1 - McCoy, Ellen A1 - Syska, Norbert A1 - Plath, Martin A1 - Schlupp, Ingo A1 - Riesch, Rüdiger T1 - Mustached males in a tropical poeciliid fish - emerging female preference selects for a novel male trait JF - Behavioral ecology and sociobiology N2 - One possible mechanism for the (co-)evolution of seemingly novel male traits and female preferences for them is that males exploit pre-existing female biases, and livebearing fishes (Poeciliidae) have been at the forefront of this research for almost two decades. Here, using 13 poeciliid species from four different genera, we tested whether mustache-like rostral filaments found in males of some Mexican molly (Poecilia sphenops) populations could have evolved due to exploitation of a pre-existing female bias. While Mexican mollies were the only species with a significant female association preference for mustached males, we also did not find any species exhibiting significant aversion for mustached males; rather, variance in female preference scores was large throughout. For example, more than 25% of females spent twice as much time with the mustached male compared to the non-mustached male in most species, but even 31% of Mexican molly females spent more time near the non-mustached male. Hence, a comparison of the strength of preference was inconclusive. We discuss the possibility that the female preference of P. sphenops for mustached males could be due to a female pre-existing bias (sensu lato), even if population means were not significant for species other than P. sphenops. This highlights the importance of distinguishing between population means and individual preferences when interpreting mate choice, and thus, adds depth to the concept of mating preferences as a motor for evolutionary change. KW - Female choice KW - Mate preferences KW - Pre-existing bias KW - Sexual selection KW - Character mapping Y1 - 2011 U6 - https://doi.org/10.1007/s00265-011-1154-x SN - 0340-5443 VL - 65 IS - 7 SP - 1437 EP - 1445 PB - Springer CY - New York ER - TY - JOUR A1 - Girndt, Antje A1 - Riesch, Rüdiger A1 - Schröder, Christiane A1 - Sehlupp, Ingo A1 - Plath, Martin A1 - Tiedemann, Ralph T1 - Multiple paternity in different populations of the sailfin molly, Poecilia latipinna JF - Animal biology N2 - Rates of multiple paternities were investigated in the sailfin molly (Poecilia latipinna), using eight microsatellite loci. Genotyping was performed for offspring and mothers in 40 broods from four allopatric populations from the south-eastern U.S.A. along a geographic stretch of 1200 km in west-east direction and approximately 200 km from north to south. No significant differences regarding rates of multiple paternities were found between populations despite sample populations stemming from ecologically divergent habitats. Even the most conservative statistical approach revealed a minimum of 70% of the broods being sired by at least two males, with an average of 1.80-2.95 putative fathers per brood. Within broods, one male typically sired far more offspring than would be expected under an assumed equal probability of all detected males siring offspring. KW - Promiscuity KW - mate choice KW - multiple paternity KW - sperm competition KW - Poeciliidae Y1 - 2012 U6 - https://doi.org/10.1163/157075611X618192 SN - 1570-7555 VL - 62 IS - 3 SP - 245 EP - 262 PB - Brill CY - Leiden ER - TY - JOUR A1 - Plath, Martin A1 - Pfenninger, Markus A1 - Lerp, Hannes A1 - Riesch, Rüdiger A1 - Eschenbrenner, Christoph A1 - Slattery, Patrick A. A1 - Bierbach, David A1 - Herrmann, Nina A1 - Schulte, Matthias A1 - Arias-Rodriguez, Lenin A1 - Rimber Indy, Jeane A1 - Passow, Courtney A1 - Tobler, Michael T1 - Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments JF - Evolution N2 - We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RIs) was negatively correlated with the strength of natural selection (RIm), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. KW - Ecological speciation KW - isolation-by-adaptation KW - local adaptation KW - Poecilia mexicana KW - reinforcement KW - sexual isolation Y1 - 2013 U6 - https://doi.org/10.1111/evo.12133 SN - 0014-3820 VL - 67 IS - 9 SP - 2647 EP - 2661 PB - Wiley-Blackwell CY - Hoboken ER -