TY - JOUR A1 - Stolle, Claudia A1 - Michaelis, Ingo A1 - Rauberg, Jan T1 - The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites JF - Earth, planets and space N2 - Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ. KW - Geomagnetic field KW - Ionospheric current KW - Geomagnetic models Y1 - 2016 U6 - https://doi.org/10.1186/s40623-016-0494-1 SN - 1880-5981 VL - 68 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Park, Jaeheung A1 - Lühr, Hermann A1 - Kervalishvili, Guram N. A1 - Rauberg, Jan A1 - Michaelis, Ingo A1 - Stolle, Claudia A1 - Kwak, Young-Sil T1 - Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: The spatial structure and scale sizes JF - Journal of geophysical research : Space physics N2 - Previous studies suggested that electric and/or magnetic field fluctuations observed in the nighttime topside ionosphere at midlatitudes generally originate from quiet time nocturnal medium-scale traveling ionospheric disturbances (MSTIDs). However, decisive evidences for the connection between the two have been missing. In this study we make use of the multispacecraft observations of midlatitude magnetic fluctuations (MMFs) in the nighttime topside ionosphere by the Swarm constellation. The analysis results show that the area hosting MMFs is elongated in the NW-SE (NE-SW) direction in the Northern (Southern) Hemisphere. The elongation direction and the magnetic field polarization support that the area hosting MMFs is nearly field aligned. All these properties of MMFs suggest that they have close relationship with MSTIDs. Expectation values of root-mean-square field-aligned currents associated with MMFs are up to about 4nA/m(2). MMF coherency significantly drops for longitudinal distances of 1 degrees. KW - midlatitude nighttime magnetic fluctuation KW - nighttime MSTID KW - Swarm constellation Y1 - 2015 U6 - https://doi.org/10.1002/2015JA021315 SN - 2169-9380 SN - 2169-9402 VL - 120 IS - 8 SP - 6818 EP - 6830 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Park, Jaeheung A1 - Stolle, Claudia A1 - Yamazaki, Yosuke A1 - Rauberg, Jan A1 - Michaelis, Ingo A1 - Olsen, Nils T1 - Diagnosing low-/mid-latitude ionospheric currents using platform magnetometers BT - CryoSat-2 and GRACE-FO JF - Earth, planets and space N2 - Electric currents flowing in the terrestrial ionosphere have conventionally been diagnosed by low-earth-orbit (LEO) satellites equipped with science-grade magnetometers and long booms on magnetically clean satellites. In recent years, there are a variety of endeavors to incorporate platform magnetometers, which are initially designed for navigation purposes, to study ionospheric currents. Because of the suboptimal resolution and significant noise of the platform magnetometers, however, most of the studies were confined to high-latitude auroral regions, where magnetic field deflections from ionospheric currents easily exceed 100 nT. This study aims to demonstrate the possibility of diagnosing weak low-/mid-latitude ionospheric currents based on platform magnetometers. We use navigation magnetometer data from two satellites, CryoSat-2 and the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), both of which have been intensively calibrated based on housekeeping data and a high-precision geomagnetic field model. Analyses based on 8 years of CryoSat-2 data as well as similar to 1.5 years of GRACE-FO data reproduce well-known climatology of inter-hemispheric field-aligned currents (IHFACs), as reported by previous satellite missions dedicated to precise magnetic observations. Also, our results show that C-shaped structures appearing in noontime IHFAC distributions conform to the shape of the South Atlantic Anomaly. The F-region dynamo currents are only partially identified in the platform magnetometer data, possibly because the currents are weaker than IHFACs in general and depend significantly on altitude and solar activity. Still, this study evidences noontime F-region dynamo currents at the highest altitude (717 km) ever reported. We expect that further data accumulation from continuously operating missions may reveal the dynamo currents more clearly during the next solar maximum. KW - Platform magnetometers KW - CryoSat-2 KW - GRACE-FO KW - Inter-hemispheric KW - field-aligned currents KW - F-region dynamo currents Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01274-3 SN - 1343-8832 SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Park, Jaeheung A1 - Lühr, Hermann A1 - Kervalishvili, Guram A1 - Rauberg, Jan A1 - Stolle, Claudia A1 - Kwak, Young-Sil A1 - Lee, Woo Kyoung T1 - Morphology of high-latitude plasma density perturbations as deduced from the total electron content measurements onboard the Swarm constellation JF - Journal of geophysical research : A, Space physics N2 - In this study, we investigate the climatology of high-latitude total electron content (TEC) variations as observed by the dual-frequency Global Navigation Satellite Systems (GNSS) receivers onboard the Swarm satellite constellation. The distribution of TEC perturbations as a function of geographic/magnetic coordinates and seasons reasonably agrees with that of the Challenging Minisatellite Payload observations published earlier. Categorizing the high-latitude TEC perturbations according to line-of-sight directions between Swarm and GNSS satellites, we can deduce their morphology with respect to the geomagnetic field lines. In the Northern Hemisphere, the perturbation shapes are mostly aligned with the L shell surface, and this anisotropy is strongest in the nightside auroral (substorm) and subauroral regions and weakest in the central polar cap. The results are consistent with the well-known two-cell plasma convection pattern of the high-latitude ionosphere, which is approximately aligned with L shells at auroral regions and crossing different L shells for a significant part of the polar cap. In the Southern Hemisphere, the perturbation structures exhibit noticeable misalignment to the local L shells. Here the direction toward the Sun has an additional influence on the plasma structure, which we attribute to photoionization effects. The larger offset between geographic and geomagnetic poles in the south than in the north is responsible for the hemispheric difference. Y1 - 2017 U6 - https://doi.org/10.1002/2016JA023086 SN - 2169-9380 SN - 2169-9402 VL - 122 IS - 1 SP - 1338 EP - 1359 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Stolle, Claudia A1 - Michaelis, Ingo A1 - Rauberg, Jan T1 - The role of high‐resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10–15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 887 KW - geomagnetic field KW - ionospheric current KW - geomagnetic models Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435500 SN - 1866-8372 IS - 887 ER - TY - JOUR A1 - Xiong, Chao A1 - Stolle, Claudia A1 - Alken, Patrick A1 - Rauberg, Jan T1 - Relationship between large-scale ionospheric field-aligned currents and electron/ion precipitations BT - DMSP observations JF - Earth, planets and space N2 - In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF)B(y)andB(z)components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMFBz, which is similar to the behavior of FACs. Under weak northward and southwardB(z)conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5 degrees) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents. KW - field-aligned currents KW - aurora KW - particle precipitation KW - DMSP Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01286-z SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER -