TY - GEN A1 - Choi, Youngeun A1 - Schmidt, Carsten A1 - Tinnefeld, Philip A1 - Bald, Ilko A1 - Rödiger, Stefan T1 - A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads T2 - Postprints der Universität Potsdam : Mathematisch-naturwissenschaftliche Reihe N2 - The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 705 KW - nucleic-acids KW - hybridization KW - microrna KW - flourescence KW - biomarkers KW - platform KW - particle KW - binding KW - array KW - gene Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428271 SN - 1866-8372 IS - 705 ER - TY - GEN A1 - Czarnecka, Malgorzata A1 - Weichelt, Ulrike A1 - Rödiger, Stefan A1 - Hanack, Katja T1 - Novel Anti Double-Stranded Nucleic Acids Full-Length Recombinant Camelid Heavy-Chain Antibody for the Detection of miRNA T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The discovery that certain diseases have specific miRNA signatures which correspond to disease progression opens a new biomarker category. The detection of these small non-coding RNAs is performed routinely using body fluids or tissues with real-time PCR, next-generation sequencing, or amplification-based miRNA assays. Antibody-based detection systems allow an easy onset handling compared to PCR or sequencing and can be considered as alternative methods to support miRNA diagnostic in the future. In this study, we describe the generation of a camelid heavy-chain-only antibody specifically recognizing miRNAs to establish an antibody-based detection method. The generation of nucleic acid-specific binders is a challenge. We selected camelid binders via phage display, expressed them as VHH as well as full-length antibodies, and characterized the binding to several miRNAs from a signature specific for dilated cardiomyopathy. The described workflow can be used to create miRNA-specific binders and establish antibody-based detection methods to provide an additional way to analyze disease-specific miRNA signatures. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1274 KW - antibody KW - camelid antibody KW - heavy-chain-only antibody KW - miRNA KW - nucleic acids KW - novel biomarkers Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569142 SN - 1866-8372 SP - 1 EP - 18 ER -