TY - JOUR A1 - Klinka, Karel D. A1 - Imrich, Jan A1 - Danihel, I. A1 - Bohm, Stanislav A1 - Kristian, Pavol A1 - Harnul'akova, S. A1 - Pihlaja, Kalevi A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Configuration and E/Z interconversion mechanism of O(S)-allyl-S(O)-methyl-N-(acridin-9-yl)iminothiocarbonate N2 - The configuration and dynamic behavior of O-allyl-S-methyl-N-(acridin-9-yl)iminothiocarbonate (1) and its S- allyl-O-methyl regioisomer (2) were studied using quantum chemical calculations and by applying a novel graphical method to scatter maps obtained from MD simulations for evaluation of an NOE-weighted internuclear distance (r(NOE)). Energy calculations indicated that the Z configuration was predominant for each compound and, further, this was supported both by the calculated chemical shifts and the rNOE. Both N-inversion- and rotation-type transition-state structures were also calculated for the E/Z isomerization process, the results indicating that the preferred interconversion mechanism for 1 is N-inversion, but contrastingly, interconversion via rotation is equally as probable as N-inversion for 2. This supports the notion that one or the other or both pathways can be active and each system needs to be assessed on a case- by-case basis. Copyright (c) 2005 John Wiley & Sons, Ltd Y1 - 2005 SN - 0749-1581 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas A1 - Pihlaja, Kalevi T1 - Application of (1)J(C,H) coupling constants in conformational analysis N2 - Conformational equilibria for a number of methyl substituted 1,3-dioxanes 1, 1,3-oxathianes 2 and 1,3-dithianes 3 were calculated at the HF and DFT levels of theory. In addition to the chair conformers also the energetically adjacent twist conformers were considered and the positions of the corresponding conformational equilibria estimated. On the basis of the global energy minima of conformers, participating in the conformational equilibria, the 1J(C,Hax,equ) coupling constants were calculated using the GIAO method and compared with the experimental values obtained from C-13, H- 1 coupled C-13 NMR spectra. The Perlin effect, the influence of the solvent and the suitability of this NMR parameter for assigning the conformational equilibria present are critically discussed. (c) 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0040-4020 ER - TY - JOUR A1 - Neuvonen, Kari A1 - Fulop, Ferenc A1 - Neuvonen, Helmi A1 - Koch, Andreas A1 - Kleinpeter, Erich A1 - Pihlaja, Kalevi T1 - Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4- tetrahydroisoquinolines as explained by resonance polarization concept N2 - Propagation of inductive and resonance effects of phenyl substituents within 1-(substituted phenyl)-6,7- dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines were studied with the aid of C-13 and N-15 NMR chemical shifts and ab initio calculations. The substituent-induced changes in the chemical shift (SCS) were correlated with a dual substituent parameter equation. The contributions of conjugative (rho(R)) and nonconjugative effects (rho(F)) were analyzed, and mapping of the substituent-induced changes is given over the entire isoquinoline moiety for both series. The experimental results can be rationalized with the aid of the resonance polarization concept. This means the consideration of the substituent-sensitive balance of different resonance structures, i.e., electron delocalization, and the effect of the aromatic ring substituents on their relative contributions. With tetrahydroisoquinolines, the delocalization of the nitrogen lone pair (stereoelectronic effect) particularly contributes. Correlation analysis of the Mulliken atomic charges for the dihydroisoquinoline derivatives was also performed. The results support the concept of the substituent-sensitive polarization of the isoquinoline moiety even if the polarization pattern achieved via the NMR approach is not quite the same as that predicted by the computational charges. Previously the concepts of localized pi- polarization and extended polarization have been used to explain polar substituent effects within aromatic side-chain derivatives. We consider that the resonance polarization model effectively contributes to the understanding of the polar substituent effects Y1 - 2005 ER -