TY - GEN A1 - Pavlenko, Elena S. A1 - Sander, Mathias A1 - Mitzscherling, Steffen A1 - Pudell, Jan-Etienne A1 - Zamponi, Flavio A1 - Rössle, Matthias A1 - Bojahr, Andre A1 - Bargheer, Matias T1 - Azobenzene – functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers N2 - We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε ∼ 5 × 10−4 is calibrated by ultrafast X-ray diffraction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 297 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-101996 VL - 8 SP - 13297 EP - 13302 ER - TY - JOUR A1 - Pavlenko, Elena S. A1 - Sander, Mathias A1 - Mitzscherling, S. A1 - Pudell, Jan-Etienne A1 - Zamponi, Flavio A1 - Roessle, M. A1 - Bojahr, Andre A1 - Bargheer, Matias T1 - Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers JF - Nanoscale N2 - We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain epsilon similar to 5 x 10(-4) is calibrated by ultrafast X-ray diffraction. Y1 - 2016 U6 - https://doi.org/10.1039/c6nr01448h SN - 2040-3364 SN - 2040-3372 VL - 8 SP - 13297 EP - 13302 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Pavlenko, Elena S. A1 - Sander, Mathias A1 - Cui, Q. A1 - Bargheer, Matias T1 - Gold Nanorods Sense the Ultrafast Viscoelastic Deformation of Polymers upon Molecular Strain Actuation JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - On the basis of the layer-by-layer deposition of polyelectrolytes, we have designed hybrid nanolayer composites for integrated optoacoustic experiments. The femtosecond-laser-excitation of an Azo functionalized film launches nanoscale strain waves at GHz frequencies into a transparent polymer layer. Gold nanorods deposited on the surface sense the arrival of these hyper-sound-waves on the picosecond time scale via a modification of their longitudinal plasmon resonance. We simulated the strain waves using a simple linear masses-and-springs model, which yields good agreement with the observed time scales associated with the nanolayer thicknesses of the constituent materials. From systematic experiments with calibrated strain amplitudes we conclude that reversible viscoelastic deformations of the polyelectrolyte multilayers are triggered by ultrashort pressure transients of about 4 MPa. Our experiments show that strain-mediated interactions in nanoarchitectures composed of molecular photoswitches and plasmonic particles may be used to design new functionalities. The approach combines the highly flexible and cost-effective preparation of polyelectrolyte multilayers with ultrafast molecular strain actuation and plasmonic sensing. Although we use simple flat layered structures for demonstration, this new concept can be used for three-dimensional nanoassemblies with different functionalities. The ultrafast and reversible nature of the response is highly desirable, and the short wavelength associated with the high frequency of the hyper-sound-waves connecting photoactive molecules and nanoparticles inherently gives spectroscopic access to the nanoscale. High-frequency elastic moduli are derived from the ultrafast spectroscopy of the hypersonic response in polyelectrolyte multilayers. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b06915 SN - 1932-7447 VL - 120 SP - 24957 EP - 24964 PB - American Chemical Society CY - Washington ER -