TY - JOUR A1 - Paredes, E. G. A1 - Boo, M. A1 - Amor, M. A1 - Bruguera, J. D. A1 - Döllner, Jürgen Roland Friedrich T1 - Extended hybrid meshing algorithm for multiresolution terrain models JF - International journal of geographical information science N2 - Hybrid terrains are a convenient approach for the representation of digital terrain models, integrating heterogeneous data from different sources. In this article, we present a general, efficient scheme for achieving interactive level-of-detail rendering of hybrid terrain models, without the need for a costly preprocessing or resampling of the original data. The presented method works with hybrid digital terrains combining regular grid data and local high-resolution triangulated irregular networks. Since grid and triangulated irregular network data may belong to different datasets, a straightforward combination of both geometries would lead to meshes with holes and overlapping triangles. Our method generates a single multiresolution model integrating the different parts in a coherent way, by performing an adaptive tessellation of the region between their boundaries. Hence, our solution is one of the few existing approaches for integrating different multiresolution algorithms within the same terrain model, achieving a simple interactive rendering of complex hybrid terrains. KW - 3D modeling KW - 3D visualization KW - geovisualization KW - triangulated irregular networks Y1 - 2012 U6 - https://doi.org/10.1080/13658816.2011.615317 SN - 1365-8816 VL - 26 IS - 5 SP - 771 EP - 793 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Paredes, E. G. A1 - Amor, M. A1 - Boo, M. A1 - Bruguera, J. D. A1 - Döllner, Jürgen Roland Friedrich T1 - Hybrid terrain rendering based on the external edge primitive JF - International journal of geographical information science N2 - Hybrid terrain models combine large regular data sets and high-resolution irregular meshes [triangulated irregular network (TIN)] for topographically and morphologically complex terrain features such as man-made microstructures or cliffs. In this paper, a new method to generate and visualize this kind of 3D hybrid terrain models is presented. This method can integrate geographic data sets from multiple sources without a remeshing process to combine the heterogeneous data of the different models. At the same time, the original data sets are preserved without modification, and, thus, TIN meshes can be easily edited and replaced, among other features. Specifically, our approach is based on the utilization of the external edges of convexified TINs as the fundamental primitive to tessellate the space between both types of meshes. Our proposal is eminently parallel, requires only a minimal preprocessing phase, and minimizes the storage requirements when compared with the previous proposals. KW - digital terrain model KW - Terrain rendering KW - TIN KW - multiresolution KW - hybrid terrain model Y1 - 2016 U6 - https://doi.org/10.1080/13658816.2015.1105375 SN - 1365-8816 SN - 1362-3087 VL - 30 SP - 1095 EP - 1116 PB - American Chemical Society CY - Abingdon ER -