TY - GEN A1 - Xenikoudakis, Georgios A1 - Ahmed, Mayeesha A1 - Harris, Jacob Colt A1 - Wadleigh, Rachel A1 - Paijmans, Johanna L. A. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Lerner, Heather A1 - Hofreiter, Michael T1 - Ancient DNA reveals twenty million years of aquatic life in beavers T2 - Current biology : CB N2 - Xenikoudakis et al. report a partial mitochondrial genome of the extinct giant beaver Castoroides and estimate the origin of aquatic behavior in beavers to approximately 20 million years. This time estimate coincides with the extinction of terrestrial beavers and raises the question whether the two events had a common cause. Y1 - 2020 U6 - https://doi.org/10.1016/j.cub.2019.12.041 SN - 0960-9822 SN - 1879-0445 VL - 30 IS - 3 SP - R110 EP - R111 PB - Current Biology Ltd. CY - London ER - TY - GEN A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 505 KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422555 SN - 1866-8372 IS - 505 ER - TY - GEN A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - Gonzalez-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA BT - technical advances and conceptual shifts T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 908 KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438816 SN - 1866-8372 IS - 908 SP - 284 EP - 295 ER - TY - GEN A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analía M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - López-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andrés A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Aguilar, José Luis A1 - MacPhee, Ross D.E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 793 KW - ancient DNA KW - evolutionary history KW - genome sequence KW - reveals KW - contamination KW - alignment KW - reads KW - bones Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440801 SN - 1866-8372 IS - 793 ER - TY - GEN A1 - Taron, Ulrike H. A1 - Lell, Moritz A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. T1 - Testing of Alignment Parameters for Ancient Samples BT - Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool T2 - Genes N2 - High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 415 KW - ancient DNA KW - short-read mapping KW - palaeogenomics KW - alignment sensitivity / specificity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409683 ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Förster, Daniel W. A1 - Henneberger, Kirstin A1 - Meyer, Matthias A1 - Nickel, Birgit A1 - Nagel, Doris A1 - Worsøe Havmøller, Rasmus A1 - Baryshnikov, Gennady F. A1 - Joger, Ulrich A1 - Rosendahl, Wilfried A1 - Hofreiter, Michael T1 - Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations JF - BMC Evolutionary Biology N2 - Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies. KW - Ancient DNA KW - Hybridisation capture KW - Leopards KW - Mitochondrial genomes KW - Mitogenomes KW - mtDNA KW - Palaeogenetics KW - Panthera pardus Y1 - 2018 U6 - https://doi.org/10.1186/s12862-018-1268-0 SN - 1471-2148 VL - 18 IS - 156 PB - BioMed Central und Springer CY - London, Berlin und Heidelberg ER - TY - JOUR A1 - Taron, Ulrike H. A1 - Lell, Moritz A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. T1 - Testing of Alignment Parameters for Ancient Samples BT - Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool JF - Genes N2 - High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material. KW - ancient DNA KW - short-read mapping KW - palaeogenomics KW - alignment sensitivity / specificity Y1 - 2018 U6 - https://doi.org/10.3390/genes9030157 SN - 2073-4425 VL - 9 IS - 3 SP - 1 EP - 12 PB - Molecular Diversity Preservation International CY - Basel ER - TY - THES A1 - Paijmans, Johanna L. A. T1 - Application of hybridisation capture to investigate complete mitogenomes from ancient samples Y1 - 2015 ER - TY - GEN A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Gonzalez, Javier A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. T1 - Consensify BT - a method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1033 KW - palaeogenomics KW - ancient DNA KW - sequencing error KW - error reduction KW - D statistics KW - bioinformatics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472521 SN - 1866-8372 IS - 1033 ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barnett, Ross A1 - Gilbert, M. Thomas P. A1 - Zepeda-Mendoza, M. Lisandra A1 - Reumer, Jelle W. F. A1 - de Vos, John A1 - Zazula, Grant A1 - Nagel, Doris A1 - Baryshnikov, Gennady F. A1 - Leonard, Jennifer A. A1 - Rohland, Nadin A1 - Westbury, Michael V. A1 - Barlow, Axel A1 - Hofreiter, Michael T1 - Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics JF - Current biology N2 - Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (similar to 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Y1 - 2017 U6 - https://doi.org/10.1016/j.cub.2017.09.033 SN - 0960-9822 SN - 1879-0445 VL - 27 SP - 3330 EP - + PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analia M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - Lopez-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andres A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Luis Aguilar, Jose A1 - MacPhee, Ross D. E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica JF - Nature Communications N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms15951 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Fickel, Jörns A1 - Courtiol, Alexandre A1 - Hofreiter, Michael A1 - Foerster, Daniel W. T1 - Impact of enrichment conditions on cross-species capture of fresh and degraded DNA JF - Molecular ecology resources N2 - Abstract By combining high-throughput sequencing with target enrichment (‘hybridization capture’), researchers are able to obtain molecular data from genomic regions of interest for projects that are otherwise constrained by sample quality (e.g. degraded and contamination-rich samples) or a lack of a priori sequence information (e.g. studies on nonmodel species). Despite the use of hybridization capture in various fields of research for many years, the impact of enrichment conditions on capture success is not yet thoroughly understood. We evaluated the impact of a key parameter – hybridization temperature – on the capture success of mitochondrial genomes across the carnivoran family Felidae. Capture was carried out for a range of sample types (fresh, archival, ancient) with varying levels of sequence divergence between bait and target (i.e. across a range of species) using pools of individually indexed libraries on Agilent SureSelect™ arrays. Our results suggest that hybridization capture protocols require specific optimization for the sample type that is being investigated. Hybridization temperature affected the proportion of on-target sequences following capture: for degraded samples, we obtained the best results with a hybridization temperature of 65 °C, while a touchdown approach (65 °C down to 50 °C) yielded the best results for fresh samples. Evaluation of capture performance at a regional scale (sliding window approach) revealed no significant improvement in the recovery of DNA fragments with high sequence divergence from the bait at any of the tested hybridization temperatures, suggesting that hybridization temperature may not be the critical parameter for the enrichment of divergent fragments. KW - degraded DNA KW - Felidae KW - hybridization capture KW - mitogenomes KW - next-generation sequencing KW - sequence enrichment Y1 - 2016 U6 - https://doi.org/10.1111/1755-0998.12420 SN - 1755-098X SN - 1755-0998 VL - 16 SP - 42 EP - 55 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Gaudry, Michael J. A1 - Jastroch, Martin A1 - Treberg, Jason R. A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Starrett, James A1 - Wales, Nathan A1 - Signore, Anthony V. A1 - Springer, Mark S. A1 - Campbell, Kevin L. T1 - Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades JF - Science Advances Y1 - 2017 U6 - https://doi.org/10.1126/sciadv.1602878 SN - 2375-2548 VL - 3 SP - S337 EP - S337 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Kehlmaier, Christian A1 - Barlow, Axel A1 - Hastings, Alexander K. A1 - Vamberger, Melita A1 - Paijmans, Johanna L. A. A1 - Steadman, David W. A1 - Albury, Nancy A. A1 - Franz, Richard A1 - Hofreiter, Michael A1 - Fritz, Uwe T1 - Tropical ancient DNA reveals relationships of the extinct bahamian giant tortoise Chelonoidis alburyorum JF - Proceedings of the Royal Society of London : Series B, Biological sciences N2 - Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galapagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galapagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact. KW - Bahamas KW - biogeography KW - extinction KW - palaeontology KW - phylogeny Y1 - 2017 U6 - https://doi.org/10.1098/rspb.2016.2235 SN - 0962-8452 SN - 1471-2954 VL - 284 PB - The Royal Society CY - London ER - TY - JOUR A1 - Taron, Ulrike H. A1 - Lell, Moritz A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. T1 - Testing of Alignment Parameters for Ancient Samples BT - Evaluating and Optimizing Mapping Parameters for Ancient Samples Using the TAPAS Tool JF - Genese N2 - High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material. KW - ancient DNA KW - short-read mapping KW - palaeogenomics KW - paleogenomics KW - alignment sensitivity/specificity Y1 - 2018 U6 - https://doi.org/10.3390/genes9030157 SN - 2073-4425 VL - 9 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Gonzalez, Javier A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. T1 - Consensify BT - a method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates JF - Genes / Molecular Diversity Preservation International N2 - A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes. KW - palaeogenomics KW - ancient DNA KW - sequencing error KW - error reduction KW - D statistics KW - bioinformatics Y1 - 2020 U6 - https://doi.org/10.3390/genes11010050 SN - 2073-4425 VL - 11 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Henneberger, Kirstin A1 - Fickel, Jörns A1 - Hofreiter, Michael A1 - Foerste, Daniel W. G. T1 - Ancestral mitogenome capture of the Southeast Asian banded linsang JF - PLoS ONE N2 - Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives. KW - Shotgun sequencing KW - Mitochondria KW - Phylogenetics KW - Phylogenetic analysis KW - Paleogenetics KW - Sequence alignment KW - Genomics KW - Museum collections Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0234385 SN - 1932-6203 VL - 15 IS - 6 PB - PLOS CY - San Francisco, California, US ER - TY - JOUR A1 - Springer, Mark S. A1 - Signore, Anthony V. A1 - Paijmans, Johanna L. A. A1 - Velez-Juarbe, Jorge A1 - Domning, Daryl P. A1 - Bauer, Cameron E. A1 - He, Kai A1 - Crerar, Lorelei A1 - Campos, Paula F. A1 - Murphy, William J. A1 - Meredith, Robert W. A1 - Gatesy, John A1 - Willerslev, Eske A1 - MacPhee, Ross D. E. A1 - Hofreiter, Michael A1 - Campbell, Kevin L. T1 - Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia JF - Molecular phylogenetics and evolution N2 - The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30 kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean = 98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans. (C) 2015 Elsevier Inc. All rights reserved. Y1 - 2015 U6 - https://doi.org/10.1016/j.ympev.2015.05.022 SN - 1055-7903 SN - 1095-9513 VL - 91 SP - 178 EP - 193 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA: Technical advances and conceptual shifts JF - Bioessays : ideas that push the boundaries N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2015 U6 - https://doi.org/10.1002/bies.201400160 SN - 0265-9247 SN - 1521-1878 VL - 37 IS - 3 SP - 284 EP - 293 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zhang, Hucai A1 - Paijmans, Johanna L. A. A1 - Chang, Fengqin A1 - Wu, Xiaohong A1 - Chen, Guangjie A1 - Lei, Chuzhao A1 - Yang, Xiujuan A1 - Wei, Zhenyi A1 - Bradley, Daniel G. A1 - Orlando, Ludovic A1 - O'Connor, Terry A1 - Hofreiter, Michael T1 - Morphological and genetic evidence for early Holocene cattle management in northeastern China JF - Nature Communications N2 - The domestication of cattle is generally accepted to have taken place in two independent centres: around 10,500 years ago in the Near East, giving rise to modern taurine cattle, and two millennia later in southern Asia, giving rise to zebu cattle. Here we provide firmly dated morphological and genetic evidence for early Holocene management of taurine cattle in northeastern China. We describe conjoining mandibles from this region that show evidence of oral stereotypy, dated to the early Holocene by two independent C-14 dates. Using Illumina high-throughput sequencing coupled with DNA hybridization capture, we characterize 15,406 bp of the mitogenome with on average 16.7-fold coverage. Phylogenetic analyses reveal a hitherto unknown mitochondrial haplogroup that falls outside the known taurine diversity. Our data suggest that the first attempts to manage cattle in northern China predate the introduction of domestic cattle that gave rise to the current stock by several thousand years. Y1 - 2013 U6 - https://doi.org/10.1038/ncomms3755 SN - 2041-1723 VL - 4 IS - 6 PB - Nature Publ. Group CY - London ER - TY - CHAP A1 - Hofreiter, Michael A1 - Barlow, Axel A1 - Paijmans, Johanna L. A. A1 - Westbury, Michael V. T1 - Genomic analyses from highly degraded DNA T2 - Genome Y1 - 2015 SN - 0831-2796 SN - 1480-3321 VL - 58 IS - 5 SP - 228 EP - 228 PB - NRC Research Press CY - Ottawa ER - TY - GEN A1 - Paijmans, Johanna L. A. A1 - Barlow, Axel A1 - Henneberger, Kirstin A1 - Fickel, Jörns A1 - Hofreiter, Michael A1 - Foerste, Daniel W. G. T1 - Ancestral mitogenome capture of the Southeast Asian banded linsang T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 972 KW - Shotgun sequencing KW - Mitochondria KW - Phylogenetics KW - Phylogenetic analysis KW - Paleogenetics KW - Sequence alignment KW - Genomics KW - Museum collections Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474441 SN - 1866-8372 IS - 972 ER - TY - JOUR A1 - Signore, Anthony V. A1 - Paijmans, Johanna L. A. A1 - Hofreiter, Michael A1 - Fago, Angela A1 - Weber, Roy E. A1 - Springer, Mark S. A1 - Campbell, Kevin L. T1 - Emergence of a chimeric globin pseudogene and increased Hemoglobin Oxygen Affinity Underlie the evolution of aquatic specializations in Sirenia JF - Molecular biology and evolution N2 - As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller’s sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb–O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb–O2 affinity in (sub)Arctic Steller’s sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores. KW - ancient DNA KW - aquatic adaptation KW - gene conversion KW - hemoglobin KW - oxygen affinity KW - molecular evolution KW - myoglobin KW - neuroglobin KW - cytoglobin KW - pseudogene Y1 - 2019 U6 - https://doi.org/10.1093/molbev/msz044 SN - 0737-4038 SN - 1537-1719 VL - 36 IS - 6 SP - 1134 EP - 1147 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gonzalez-Fortes, Gloria M. A1 - Tassi, F. A1 - Trucchi, E. A1 - Henneberger, K. A1 - Paijmans, Johanna L. A. A1 - Diez-del-Molino, D. A1 - Schroeder, H. A1 - Susca, R. R. A1 - Barroso-Ruiz, C. A1 - Bermudez, F. J. A1 - Barroso-Medina, C. A1 - Bettencourt, A. M. S. A1 - Sampaio, H. A. A1 - Salas, A. A1 - de Lombera-Hermida, A. A1 - Fabregas Valcarce, Ramón A1 - Vaquero, M. A1 - Alonso, S. A1 - Lozano, Marina A1 - Rodriguez-Alvarez, Xose Pedro A1 - Fernandez-Rodriguez, C. A1 - Manica, Andrea A1 - Hofreiter, Michael A1 - Barbujani, Guido T1 - A western route of prehistoric human migration from Africa into the Iberian Peninsula JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - Being at the western fringe of Europe, Iberia had a peculiar prehistory and a complex pattern of Neolithization. A few studies, all based on modern populations, reported the presence of DNA of likely African origin in this region, generally concluding it was the result of recent gene flow, probably during the Islamic period. Here, we provide evidence of much older gene flow from Africa to Iberia by sequencing whole genomes from four human remains from northern Portugal and southern Spain dated around 4000 years BP (from the Middle Neolithic to the Bronze Age). We found one of them to carry an unequivocal sub-Saharan mitogenome of most probably West or West-Central African origin, to our knowledge never reported before in prehistoric remains outside Africa. Our analyses of ancient nuclear genomes show small but significant levels of sub-Saharan African affinity in several ancient Iberian samples, which indicates that what we detected was not an occasional individual phenomenon, but an admixture event recognizable at the population level. We interpret this result as evidence of an early migration process from Africa into the Iberian Peninsula through a western route, possibly across the Strait of Gibraltar. KW - palaeogenome KW - Africa KW - Iberia KW - mitochondrial DNA KW - gene flow KW - admixture Y1 - 2019 U6 - https://doi.org/10.1098/rspb.2018.2288 SN - 0962-8452 SN - 1471-2954 VL - 286 IS - 1895 PB - Royal Society CY - London ER - TY - JOUR A1 - Sheng, Gui-Lian A1 - Basler, Nikolas A1 - Ji, Xue-Ping A1 - Paijmans, Johanna L. A. A1 - Alberti, Federica A1 - Preick, Michaela A1 - Hartmann, Stefanie A1 - Westbury, Michael V. A1 - Yuan, Jun-Xia A1 - Jablonski, Nina G. A1 - Xenikoudakis, Georgios A1 - Hou, Xin-Dong A1 - Xiao, Bo A1 - Liu, Jian-Hui A1 - Hofreiter, Michael A1 - Lai, Xu-Long A1 - Barlow, Axel T1 - Paleogenome reveals genetic contribution of extinct giant panda to extant populations JF - Current biology N2 - Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an similar to 5,000-year-old giant panda from Jiangdongshan, Teng-chong County in Yunnan Province, China. We find that this individual represents a genetically distinct population that diverged prior to the diversification of modern giant panda populations. We find evidence of differential admixture with this ancient population among modern individuals originating from different populations as well as within the same population. We also find evidence for directional gene flow, which transferred alleles from the ancient population into the modern giant panda lineages. A variable proportion of the genomes of extant individuals is therefore likely derived from the ancient population represented by our sequenced individual. Although extant giant panda populations retain reasonable genetic diversity, our results suggest that this represents only part of the genetic diversity this species harbored prior to its recent range contractions. Y1 - 2019 U6 - https://doi.org/10.1016/j.cub.2019.04.021 SN - 0960-9822 SN - 1879-0445 VL - 29 IS - 10 SP - 1695 EP - 1700 PB - Cell Press CY - Cambridge ER - TY - GEN A1 - Barlow, Axel A1 - Sheng, Gui-Lian A1 - Lai, Xu-Long A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. T1 - Once lost, twice found: Combined analysis of ancient giant panda sequences characterises extinct clade T2 - Journal of biogeography Y1 - 2018 U6 - https://doi.org/10.1111/jbi.13486 SN - 0305-0270 SN - 1365-2699 VL - 46 IS - 1 SP - 251 EP - 253 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Alberti, Federica A1 - Gonzalez, Javier A1 - Paijmans, Johanna L. A. A1 - Basler, Nikolas A1 - Preick, Michaela A1 - Henneberger, Kirstin A1 - Trinks, Alexandra A1 - Rabeder, Gernot A1 - Conard, Nicholas J. A1 - Muenzel, Susanne C. A1 - Joger, Ulrich A1 - Fritsch, Guido A1 - Hildebrandt, Thomas A1 - Hofreiter, Michael A1 - Barlow, Axel T1 - Optimized DNA sampling of ancient bones using Computed Tomography scans JF - Molecular ecology resources N2 - The prevalence of contaminant microbial DNA in ancient bone samples represents the principal limiting factor for palaeogenomic studies, as it may comprise more than 99% of DNA molecules obtained. Efforts to exclude or reduce this contaminant fraction have been numerous but also variable in their success. Here, we present a simple but highly effective method to increase the relative proportion of endogenous molecules obtained from ancient bones. Using computed tomography (CT) scanning, we identify the densest region of a bone as optimal for sampling. This approach accurately identifies the densest internal regions of petrous bones, which are known to be a source of high-purity ancient DNA. For ancient long bones, CT scans reveal a high-density outermost layer, which has been routinely removed and discarded prior to DNA extraction. For almost all long bones investigated, we find that targeted sampling of this outermost layer provides an increase in endogenous DNA content over that obtained from softer, trabecular bone. This targeted sampling can produce as much as 50-fold increase in the proportion of endogenous DNA, providing a directly proportional reduction in sequencing costs for shotgun sequencing experiments. The observed increases in endogenous DNA proportion are not associated with any reduction in absolute endogenous molecule recovery. Although sampling the outermost layer can result in higher levels of human contamination, some bones were found to have more contamination associated with the internal bone structures. Our method is highly consistent, reproducible and applicable across a wide range of bone types, ages and species. We predict that this discovery will greatly extend the potential to study ancient populations and species in the genomics era. KW - ancient DNA KW - computer tomography KW - palaeogenomics KW - paleogenetics KW - petrous bone Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12911 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1196 EP - 1208 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Förster, Daniel W. A1 - Bull, James K. A1 - Lenz, Dorina A1 - Autenrieth, Marijke A1 - Paijmans, Johanna L. A. A1 - Kraus, Robert H. S. A1 - Nowak, Carsten A1 - Bayerl, Helmut A1 - Kühn, Ralph A1 - Saveljev, Alexander P. A1 - Sindicic, Magda A1 - Hofreiter, Michael A1 - Schmidt, Krzysztof A1 - Fickel, Jörns T1 - Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species JF - Molecular ecology resources N2 - Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species’ European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species. KW - CDS KW - conservation genetics KW - Eurasian lynx KW - genetic monitoring KW - hybridization capture KW - single nucleotide polymorphism Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12924 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1356 EP - 1373 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Barlow, Axel A1 - Cahill, James A. A1 - Hartmann, Stefanie A1 - Theunert, Christoph A1 - Xenikoudakis, Georgios A1 - Gonzalez-Fortes, Gloria M. A1 - Paijmans, Johanna L. A. A1 - Rabeder, Gernot A1 - Frischauf, Christine A1 - Garcia-Vazquez, Ana A1 - Murtskhvaladze, Marine A1 - Saarma, Urmas A1 - Anijalg, Peeter A1 - Skrbinsek, Tomaz A1 - Bertorelle, Giorgio A1 - Gasparian, Boris A1 - Bar-Oz, Guy A1 - Pinhasi, Ron A1 - Slatkin, Montgomery A1 - Dalen, Love A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Partial genomic survival of cave bears in living brown bears JF - Nature Ecology & Evolution N2 - Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species. Y1 - 2018 U6 - https://doi.org/10.1038/s41559-018-0654-8 SN - 2397-334X VL - 2 IS - 10 SP - 1563 EP - 1570 PB - Nature Publ. Group CY - London ER -