TY - GEN A1 - Henkel, Janin A1 - Buchheim-Dieckow, Katja A1 - Castro, José Pedro A1 - Laeger, Thomas A1 - Wardelmann, Kristina A1 - Kleinridders, André A1 - Jöhrens, Korinna A1 - Püschel, Gerhard Paul T1 - Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 807 KW - NAFLD KW - NASH KW - endurance exercise KW - FGF21 KW - glucose intolerance KW - cholesterol KW - oxidative stress Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442384 SN - 1866-8372 IS - 807 ER - TY - JOUR A1 - Henkel, Janin A1 - Buchheim-Dieckow, Katja A1 - Castro, José Pedro A1 - Laeger, Thomas A1 - Wardelmann, Kristina A1 - Kleinridders, André A1 - Jöhrens, Korinna A1 - Püschel, Gerhard Paul T1 - Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH JF - Nutrients N2 - Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production. KW - NAFLD KW - NASH KW - endurance exercise KW - FGF21 KW - glucose intolerance KW - cholesterol KW - oxidative stress Y1 - 2019 U6 - https://doi.org/10.3390/nu11112709 SN - 2072-6643 VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Henkel, Janin A1 - Alfine, Eugenia A1 - Saín, Juliana A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, José Pedro A1 - König, Jeannette A1 - Stuhlmann, Christin A1 - Vahrenbrink, Madita A1 - Jonas, Wenke A1 - Kleinridders, André A1 - Püschel, Gerhard Paul T1 - Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol JF - Nutrients N2 - While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease. KW - non-alcoholic fatty liver disease (NAFLD) KW - NASH KW - cholesterol KW - PUFA KW - inflammation KW - oxidative stress Y1 - 2018 U6 - https://doi.org/10.3390/nu10091326 SN - 2072-6643 VL - 10 IS - 9 SP - 1 EP - 17 PB - Molecular Diversity Preservation International (MDPI) CY - Basel ER - TY - GEN A1 - Henkel, Janin A1 - Alfine, Eugenia A1 - Saín, Juliana A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, José Pedro A1 - König, Jeannette A1 - Stuhlmann, Christin A1 - Vahrenbrink, Madita A1 - Jonas, Wenke A1 - Kleinridders, André A1 - Püschel, Gerhard Paul T1 - Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol T2 - Nutrients N2 - While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 479 KW - non-alcoholic fatty liver disease (NAFLD) KW - NASH KW - cholesterol KW - PUFA KW - inflammation KW - oxidative stress Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419773 ER - TY - GEN A1 - Schäfer, Marjänn Helena A1 - Kakularam, Kumar Reddy A1 - Reisch, Florian A1 - Rothe, Michael A1 - Stehling, Sabine A1 - Heydeck, Dagmar A1 - Püschel, Gerhard Paul A1 - Kuhn, Hartmut T1 - Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1295 KW - eicosanoids KW - lipid peroxidation KW - oxidative stress KW - polyenoic fatty acids KW - erythropoiesis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576491 SN - 1866-8372 IS - 1295 ER - TY - JOUR A1 - Schäfer, Marjänn Helena A1 - Kakularam, Kumar Reddy A1 - Reisch, Florian A1 - Rothe, Michael A1 - Stehling, Sabine A1 - Heydeck, Dagmar A1 - Püschel, Gerhard Paul A1 - Kuhn, Hartmut T1 - Male Knock-in Mice Expressing an Arachidonic Acid Lipoxygenase 15B (Alox15B) with Humanized Reaction Specificity Are Prematurely Growth Arrested When Aging JF - Biomedicines N2 - Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in cell differentiation and in the pathogenesis of inflammation. The mouse genome involves seven functional Alox genes and the encoded enzymes share a high degree of amino acid conservation with their human orthologs. There are, however, functional differences between mouse and human ALOX orthologs. Human ALOX15B oxygenates arachidonic acid exclusively to its 15-hydroperoxy derivative (15S-HpETE), whereas 8S-HpETE is dominantly formed by mouse Alox15b. The structural basis for this functional difference has been explored and in vitro mutagenesis humanized the reaction specificity of the mouse enzyme. To explore whether this mutagenesis strategy may also humanize the reaction specificity of mouse Alox15b in vivo, we created Alox15b knock-in mice expressing the arachidonic acid 15-lipoxygenating Tyr603Asp+His604Val double mutant instead of the 8-lipoxygenating wildtype enzyme. These mice are fertile, display slightly modified plasma oxylipidomes and develop normally up to an age of 24 weeks. At later developmental stages, male Alox15b-KI mice gain significantly less body weight than outbred wildtype controls, but this effect was not observed for female individuals. To explore the possible reasons for the observed gender-specific growth arrest, we determined the basic hematological parameters and found that aged male Alox15b-KI mice exhibited significantly attenuated red blood cell parameters (erythrocyte counts, hematocrit, hemoglobin). Here again, these differences were not observed in female individuals. These data suggest that humanization of the reaction specificity of mouse Alox15b impairs the functionality of the hematopoietic system in males, which is paralleled by a premature growth arrest. KW - eicosanoids KW - lipid peroxidation KW - oxidative stress KW - polyenoic fatty acids KW - erythropoiesis Y1 - 2022 U6 - https://doi.org/10.3390/biomedicines10061379 SN - 2227-9059 VL - 10 SP - 1 EP - 22 PB - MDPI CY - Basel, Schweiz ET - 6 ER -