TY - JOUR A1 - Middelanis, Robin A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian A1 - Quante, Lennart A1 - Levermann, Anders T1 - Wave-like global economic ripple response to Hurricane Sandy JF - Environmental research letters : ERL / Institute of Physics N2 - Tropical cyclones range among the costliest disasters on Earth. Their economic repercussions along the supply and trade network also affect remote economies that are not directly affected. We here simulate possible global repercussions on consumption for the example case of Hurricane Sandy in the US (2012) using the shock-propagation model Acclimate. The modeled shock yields a global three-phase ripple: an initial production demand reduction and associated consumption price decrease, followed by a supply shortage with increasing prices, and finally a recovery phase. Regions with strong trade relations to the US experience strong magnitudes of the ripple. A dominating demand reduction or supply shortage leads to overall consumption gains or losses of a region, respectively. While finding these repercussions in historic data is challenging due to strong volatility of economic interactions, numerical models like ours can help to identify them by approaching the problem from an exploratory angle, isolating the effect of interest. For this, our model simulates the economic interactions of over 7000 regional economic sectors, interlinked through about 1.8 million trade relations. Under global warming, the wave-like structures of the economic response to major hurricanes like the one simulated here are likely to intensify and potentially overlap with other weather extremes. KW - supply chains KW - Hurricane Sandy KW - economic ripples KW - extreme weather KW - impacts KW - loss propagation KW - natural disasters Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac39c0 SN - 1748-9326 VL - 16 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Otto, Christian A1 - Piontek, Franziska A1 - Kalkuhl, Matthias A1 - Frieler, Katja T1 - Event-based models to understand the scale of the impact of extremes T2 - Nature energy N2 - Climate change entails an intensification of extreme weather events that can potentially trigger socioeconomic and energy system disruptions. As we approach 1 degrees C of global warming we should start learning from historical extremes and explicitly incorporate such events in integrated climate-economy and energy systems models. KW - Climate-change impacts KW - Energy economics KW - Socioeconomic scenarios Y1 - 2020 U6 - https://doi.org/10.1038/s41560-020-0562-4 SN - 2058-7546 VL - 5 IS - 2 SP - 111 EP - 114 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian T1 - Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a “no-trade-deal” situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1208 KW - model KW - origins KW - chains KW - impact KW - costs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525819 SN - 1866-8372 IS - 9 ER - TY - JOUR A1 - Wenz, Leonie A1 - Levermann, Anders A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian T1 - Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development JF - PLoS ONE N2 - After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a “no-trade-deal” situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term. KW - model KW - origins KW - chains KW - impact KW - costs Y1 - 2019 VL - 15 IS - 9 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Willner, Sven N. A1 - Otto, Christian A1 - Levermann, Anders T1 - Global economic response to river floods JF - Nature climate change N2 - Increasing Earth’s surface air temperature yields an intensification of its hydrological cycle. As a consequence, the risk of river floods will increase regionally within the next two decades due to the atmospheric warming caused by past anthropogenic greenhouse gas emissions. The direct economic losses caused by these floods can yield regionally heterogeneous losses and gains by propagation within the global trade and supply network. Here we show that, in the absence of large-scale structural adaptation, the total economic losses due to fluvial floods will increase in the next 20 years globally by 17% despite partial compensation through market adjustment within the global trade network. China will suffer the strongest direct losses, with an increase of 82%. The United States is mostly affected indirectly through its trade relations. By contrast to the United States, recent intensification of the trade relations with China leaves the European Union better prepared for the import of production losses in the future. Y1 - 2018 U6 - https://doi.org/10.1038/s41558-018-0173-2 SN - 1758-678X SN - 1758-6798 VL - 8 IS - 7 SP - 594 EP - 598 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Otto, Christian A1 - Willner, Sven N. A1 - Wenz, Leonie A1 - Frieler, Katja A1 - Levermann, Anders T1 - Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate JF - Journal of economic dynamics & control N2 - World markets are highly interlinked and local economies extensively rely on global supply and value chains. Consequently, local production disruptions, for instance caused by extreme weather events, are likely to induce indirect losses along supply chains with potentially global repercussions. These complex loss dynamics represent a challenge for comprehensive disaster risk assessments. Here, we introduce the numerical agent-based model acclimate designed to analyze the cascading of economic losses in the global supply network. Using national sectors as agents, we apply the model to study the global propagation of losses induced by stylized disasters. We find that indirect losses can become comparable in size to direct ones, but can be efficiently mitigated by warehousing and idle capacities. Consequently, a comprehensive risk assessment cannot focus solely on first-tier suppliers, but has to take the whole supply chain into account. To render the supply network climate-proof, national adaptation policies have to be complemented by international adaptation efforts. In that regard, our model can be employed to assess reasonable leverage points and to identify dynamic bottlenecks inaccessible to static analyses. (C) 2017 Elsevier B.V. All rights reserved. KW - Disaster impact analysis KW - Higher-order effects KW - Economic network KW - Resilience KW - Dynamic input-output model KW - Agent-based modeling Y1 - 2017 U6 - https://doi.org/10.1016/j.jedc.2017.08.001 SN - 0165-1889 SN - 1879-1743 VL - 83 SP - 232 EP - 269 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Holtmann, Dieter A1 - Holtmann, Elisabeth A1 - Görl, Tilo A1 - Goltz, Elke A1 - Fischer, Ulrike A1 - Janeczka, Ines A1 - Jacobi, Lena A1 - Otto, Christian A1 - Klauß, Christian A1 - Hoffmann, Juliane A1 - Tinsner, Karen A1 - Patzwald, Claudia A1 - Buchheister, Claudia A1 - Bsdok, Ursula A1 - Christ, Mirja A1 - Elsner, Anne A1 - Hagenmüller, Jan-Peter A1 - Kellner, Andreas T1 - Gewalt und Fremdenfeindlichkeit : Erklärungsfaktoren sowie Handlungsempfehlungen zu den kriminalpräventiven und zivilgesellschaftlichen Potentialen Y1 - 2004 UR - http://www.sicherheitsoffensive.brandenburg.de/sixcms/media.php/4055/ Brosch%C3%BCre_Fremdenfeindlichkeit.pdf (13.09.2013) PB - Landespräventionsrat Potsdam CY - Potsdam ER -