TY - JOUR A1 - Omorogie, Martins O. A1 - Babalola, Jonathan Oyebamiji A1 - Unuabonah, Emmanuel I. A1 - Gong, Jian Ru T1 - Kinetics and thermodynamics of heavy metal ions sequestration onto novel Nauclea diderrichii seed biomass JF - BIORESOURCE TECHNOLOGY N2 - This study reports the sequestration of Cd(II) and Hg(II) using a new biosorbent. Nauclea diderrichii seed biomass. Experimental data obtained were fitted into kinetic and thermodynamic models. Experimental data fitted best into pseudo-second order kinetic model among others. Results obtained kinetically revealed that the biosorption of Cd(II) and Hg(II) using N. diderrichii seed biosorbent increased with increase in temperature. At the highest temperature, which was 333 K. the highest amount of metal biosorbed, q(e), for Cd(II) and Hg(II) obtained were 6.30 and 6.15 mg/g respectively. The biosorption of Cd(II) was kinetically faster than that of Hg(II), the highest initial biosorption rates for Cd(II) and Hg(II) were 56.19 and 4.39 mg/g min respectively. Thermodynamic parameters obtained by Erying equation from this study revealed that the biosorption process was spontaneous, feasible, endothermic with a decrease in the degree of chaos in the biosorption system. (C) 2012 Elsevier Ltd. All rights reserved. KW - Nauclea diderrichii seed biosorbent KW - Biosorption KW - Kinetics KW - Thermodynamics KW - Film diffusion Y1 - 2012 U6 - https://doi.org/10.1016/j.biortech.2012.04.053 SN - 0960-8524 VL - 118 IS - 8 SP - 576 EP - 579 PB - ELSEVIER SCI LTD CY - OXFORD ER - TY - JOUR A1 - Omorogie, Martins O. A1 - Babalola, Jonathan Oyebamiji A1 - Unuabonah, Emmanuel I. A1 - Song, Weiguo A1 - Gong, Jian Ru T1 - Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste JF - Journal of Saudi Chemical Society N2 - Toxic Cr(III) which poses environmental hazard to flora and fauna was efficiently abstracted by low-cost Nauclea diderrichii seed biomass (NDS) with good sequestral capacity for this metal was investigated in this study. The NDS surface analyses showed that it has a specific surface area of 5.36 m(2)/g and pHpzc of 4.90. Thermogravimetric analysis of NDS showed three consecutive weight losses from 50-200 degrees C (ca. 5%), 200-400 C (ca. 35%), >400 degrees C (ca. 10%), corresponding to external water molecules, structural water molecules and heat induced condensation reactions respectively. Differential thermogram of NDS presented a large endothermic peak between 20-510 degrees C suggesting bond breakage and dissociation with the ultimate release of small molecules. The experimental data showed kinetically fast biosorption with increased initial Cr(III) concentrations, indicating the role of external mass transfer mechanism as the rate controlling mechanism in this adsorption process. The Langmuir biosorption capacity of NDS was 483.81 mg/g. The use of the corrected Akaike Information Criterion tool for ranking equilibrium models suggested that the Freundlich model best described the experimental data, which is an indication of the heterogeneous nature of the active sites on the surface of NDS. N. diderrichii seed biomass is an easily sourced, cheap and environmental friendly biosorbent which will serve as a good and cost effective alternative to activated carbon for the treatment of polluted water and industrial effluents. (C) 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. KW - Biomass KW - Equilibrium KW - External mass transfer KW - Kinetics KW - Adsorption KW - Water Y1 - 2016 U6 - https://doi.org/10.1016/j.jscs.2012.09.017 SN - 1319-6103 SN - 2212-4640 VL - 20 SP - 49 EP - 57 PB - Elsevier CY - Amsterdam ER -