TY - JOUR A1 - Salzmann, Ingo A1 - Heimel, Georg A1 - Duhm, Steffen A1 - Oehzelt, Martin A1 - Pingel, Patrick A1 - George, Benjamin M. A1 - Schnegg, Alexander A1 - Lips, Klaus A1 - Blum, Ralf-Peter A1 - Vollmer, Antje A1 - Koch, Norbert T1 - Intermolecular hybridization governs molecular electrical doping JF - Physical review letters N2 - Current models for molecular electrical doping of organic semiconductors are found to be at odds with other well-established concepts in that field, like polaron formation. Addressing these inconsistencies for prototypical systems, we present experimental and theoretical evidence for intermolecular hybridization of organic semiconductor and dopant frontier molecular orbitals. Common doping-related observations are attributed to this phenomenon, and controlling the degree of hybridization emerges as a strategy for overcoming the present limitations in the yield of doping-induced charge carriers. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.108.035502 SN - 0031-9007 VL - 108 IS - 3 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Lu, Guanghao A1 - Blakesley, James C. A1 - Himmelberger, Scott A1 - Pingel, Patrick A1 - Frisch, Johannes A1 - Lieberwirth, Ingo A1 - Salzmann, Ingo A1 - Oehzelt, Martin A1 - Di Pietro, Riccardo A1 - Salleo, Alberto A1 - Koch, Norbert A1 - Neher, Dieter T1 - Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors JF - Nature Communications N2 - Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60. Y1 - 2013 U6 - https://doi.org/10.1038/ncomms2587 SN - 2041-1723 VL - 4 IS - 1-2 PB - Nature Publ. Group CY - London ER -