TY - JOUR A1 - Hesse, Julia A1 - Klier, Dennis Tobias A1 - Sgarzi, Massimo A1 - Nsubuga, Anne A1 - Bauer, Christoph A1 - Grenzer, Joerg A1 - Hübner, Rene A1 - Wislicenus, Marcus A1 - Joshi, Tanmaya A1 - Kumke, Michael Uwe A1 - Stephan, Holger T1 - Rapid Synthesis of Sub-10nm Hexagonal NaYF4-Based Upconverting Nanoparticles using Therminol((R))66 JF - ChemistryOpen : including thesis treasury N2 - We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects. KW - core-shell materials KW - lanthanides KW - nanostructures KW - photoluminescence KW - upconversion Y1 - 2018 U6 - https://doi.org/10.1002/open.201700186 SN - 2191-1363 VL - 7 IS - 2 SP - 159 EP - 168 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Hesse, Julia A1 - Klier, Dennis Tobias A1 - Sgarzi, Massimo A1 - Nsubuga, Anne A1 - Bauer, Christoph A1 - Grenzer, Jörg A1 - Hübner, René A1 - Wislicenus, Marcus A1 - Joshi, Tanmaya A1 - Kumke, Michael Uwe A1 - Stephan, Holger T1 - Rapid synthesis of sub-10 nm hexagonal NaYF4-based upconverting nanoparticles using Therminol® 66 T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We report a simple one-pot method for the rapid preparation of sub-10nm pure hexagonal (-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol((R))66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCNPs. The upconversion (UC) luminescence properties of the nanocrystals were tuned by varying the concentrations of the dopants (Nd3+ and Yb3+ sensitizer ions and Er3+ activator ions). The size and phase-purity of the as-synthesized core and core-shell nanocrystals were assessed by using complementary transmission electron microscopy, dynamic light scattering, X-ray diffraction, and small-angle X-ray scattering studies. In-depth photophysical evaluation of the UCNPs was pursued by using steady-state and time-resolved luminescence spectroscopy. An enhancement in the UC intensity was observed if the nanocrystals, doped with optimized concentrations of lanthanide sensitizer/activator ions, were further coated with an inert/active shell. This was attributed to the suppression of surface-related luminescence quenching effects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 613 KW - core-shell materials KW - lanthanides KW - nanostructures KW - photoluminescence KW - upconversion Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423515 SN - 1866-8372 IS - 613 ER -