TY - GEN A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoaee, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1317 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587705 SN - 1866-8372 IS - 1317 ER - TY - JOUR A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoaee, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C-60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane JF - Nature Communications N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C-60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C-60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110mV, and retain >97% of the initial efficiency after 400h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Effective transport layers are essential to suppress non-radiative recombination losses. Here, the authors introduce phenylamino-functionalized ortho-carborane as an interfacial layer, and realise inverted perovskite solar cells with efficiency of over 23% and operational stability of T97=400h. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34203-x SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Pena-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Hempel, Hannes A1 - Musiienko, Artem A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Warby, Jonathan A1 - Unold, Thomas A1 - Lang, Felix A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Revealing the doping density in perovskite solar cells and its impact on device performance JF - Applied physics reviews N2 - Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085286 SN - 1931-9401 VL - 9 IS - 2 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Gutierrez-Partida, Emilio A1 - Peña-Camargo, Francisco A1 - Rothhardt, Daniel A1 - Zhang, Shanshan A1 - Raoufi, Meysam A1 - Wolansky, Jakob A1 - Abdi-Jalebi, Mojtaba A1 - Stranks, Samuel D. A1 - Albrecht, Steve A1 - Kirchartz, Thomas A1 - Neher, Dieter T1 - How to quantify the efficiency potential of neat perovskite films BT - Perovskite semiconductors with an implied efficiency exceeding 28% JF - Advanced Materials N2 - Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit. KW - non-radiative interface recombination KW - perovskite solar cells KW - photoluminescence Y1 - 2020 U6 - https://doi.org/10.1002/adma.202000080 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 17 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Peña-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Tokmoldin, Nurlan A1 - Gutierrez-Partida, Emilio A1 - Peters, Karol Pawel A1 - Perdigón-Toro, Lorena A1 - Futscher, Moritz H. A1 - Lang, Felix A1 - Warby, Jonathan A1 - Snaith, Henry J. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements JF - Solar RRL N2 - Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1% and 3% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments. KW - hysteresis KW - mobile ions KW - perovskite solar cells Y1 - 2021 U6 - https://doi.org/10.1002/solr.202100772 SN - 2367-198X VL - 6 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Wang, Qiong A1 - Smith, Joel A. A1 - Skroblin, Dieter A1 - Steele, Julian A. A1 - Wolff, Christian Michael A1 - Caprioglio, Pietro A1 - Stolterfoht, Martin A1 - Köbler, Hans A1 - Turren-Cruz, Silver-Hamill A1 - Li, Meng A1 - Gollwitzer, Christian A1 - Neher, Dieter A1 - Abate, Antonio T1 - Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1210 KW - cesium lead halides KW - crystal orientation KW - inorganic perovskites KW - ISOS-L-1I protocol KW - phase purity KW - photostability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525374 SN - 1866-8372 IS - 9 ER - TY - JOUR A1 - Warby, Jonathan A1 - Zu, Fengshuo A1 - Zeiske, Stefan A1 - Gutierrez-Partida, Emilio A1 - Frohloff, Lennart A1 - Kahmann, Simon A1 - Frohna, Kyle A1 - Mosconi, Edoardo A1 - Radicchi, Eros A1 - Lang, Felix A1 - Shah, Sahil A1 - Pena-Camargo, Francisco A1 - Hempel, Hannes A1 - Unold, Thomas A1 - Koch, Norbert A1 - Armin, Ardalan A1 - De Angelis, Filippo A1 - Stranks, Samuel D. A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Understanding performance limiting interfacial recombination in pin Perovskite solar cells JF - Advanced energy materials N2 - Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells. KW - C60 KW - defects KW - interface recombination KW - loss mechanisms KW - perovskites KW - solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103567 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoai, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane JF - Nature Communications N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34203-x SN - 2041-1723 VL - 13 IS - 1 PB - Springer Nature CY - London ER -