TY - JOUR A1 - Schubert, Marcel A1 - Steyrleuthner, Robert A1 - Bange, Sebastian A1 - Sellinger, Alan A1 - Neher, Dieter T1 - Charge transport and recombination in bulk heterojunction solar cells containing a dicyanoimidazole-based molecular acceptor N2 - Carrier transport and recombination have been studied in single component layers and blends of the soluble PPV- derivative poly[2,5-dimethoxy-1,4-phenylenevinylene-2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylenevinylene] (M3EH-PPV) and the small molecule acceptor 4,7-bis(2-(1-hexyl-4,5-dicyanoimidazole-2-yl)vinyl) benzo[c][1,2,5]-thiadiazole (HV-BT). Measurements on single carrier devices show significantly smaller electron mobility in the blend compared to the pure HV- BT layer, which is suggestive of the formation of isolated clusters of the acceptor in a continuous polymer matrix. The significant change in fill factor (FF) with increasing illumination intensity is consistently explained by a model taking into account bimolecular recombination and space charge effects. The decay of the carrier density after photoexcitation has been studied by performing photo-CELIV measurements on pure and blend layers. It is found that the decay at long delay times follows a power-law dependence, which is, however, not consistent with a Langevin-type bimolecular recombination of free charges. A good description of the data is obtained by assuming trimolecular recombination to govern the charge carrier dynamics in these systems. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/40000761 U6 - https://doi.org/10.1002/pssa.200925312 SN - 1862-6300 ER - TY - JOUR A1 - Schubert, Marcel A1 - Yin, Chunhong A1 - Castellani, Mauro A1 - Bange, Sebastian A1 - Tam, Teck Lip A1 - Sellinger, Alan A1 - Hoerhold, Hans-Heinrich A1 - Kietzke, Thomas A1 - Neher, Dieter T1 - Heterojunction topology versus fill factor correlations in novel hybrid small-molecular/polymeric solar cells N2 - The authors present organic photovoltaic (OPV) devices comprising a small molecule electron acceptor based on 2- vinyl-4,5-dicyanoimidazole (Vinazene (TM)) and a soluble poly(p-phenylenevinylene) derivative as the electron donor. A strong dependence of the fill factor (FF) and the external quantum efficiency [incident photons converted to electrons (IPCE)] on the heterojunction topology is observed. As-prepared blends provided relatively low FF and IPCE values of 26% and 4.5%, respectively, which are attributed to significant recombination of geminate pairs and free carriers in a highly intermixed blend morphology. Going to an all-solution processed bilayer device, the FF and IPCE dramatically increased to 43% and 27%, respectively. The FF increases further to 57% in devices comprising thermally deposited Vinazene layers where there is virtually no interpenetration at the donor/acceptor interface. This very high FF is comparable to values reported for OPV using fullerenes as the electron acceptor. Furthermore, the rather low electron affinity of Vinazene compound near 3.5 eV enabled a technologically important open circuit voltage (V-oc) of 1.0 V. Y1 - 2009 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.3077007 SN - 0021-9606 ER - TY - JOUR A1 - Inal, Sahika A1 - Castellani, Mauro A1 - Sellinger, Alan A1 - Neher, Dieter T1 - Relationship of photophysical properties and the device performance of novel hybrid small-molecular/polymeric solar cells N2 - We investigate solar cells comprised of a vinazene derivative (HV-BT) as the electron acceptor and the well- known polymer poly(3-hexylthiophene) as the electron donor. In the as-prepared blend, most of the excited state species, including the excimers on HV-BT, are quenched at the heterojunction. Although the photophysical properties of the blends change upon annealing, the blend solar cells largely remain uninfluenced by such treatments. A significant improvement is, however, observed when inducing phase separation at a longer length scale, for example, in solution-processed bilayer devices. Hereby, both the fill factor (FF) and the open circuit voltage are considerably increased, pointing to the importance of the heterojunction topology and the layer composition at the charge extracting contacts. An optimized device exhibits a power conversion efficiency of close to 1%. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.200900221 SN - 1022-1336 ER - TY - JOUR A1 - Steyrleuthner, Robert A1 - Bange, Sebastian A1 - Neher, Dieter T1 - Reliable electron-only devices and electron transport in n-type polymers N2 - Current-voltage analysis of single-carrier transport is a popular method for the determination of charge carrier mobilities in organic semiconductors. Although in widespread use for the analysis of hole transport, only a few reports can be found where the method was applied to electron transport. Here, we summarize the experimental difficulties related to the metal electrode leakage currents and nonlinear differential resistance (NDR) effects and explain their origin. We present a modified preparation technique for the metal electrodes and show that it significantly increases the reliability of such measurements. It allows to produce test devices with low leakage currents and without NDR even for thin organic layers. Metal oxides were often discussed as a possible cause of NDR. Our measurements on forcibly oxidized metal electrodes demonstrate that oxide layers are not exclusively responsible for NDR effects. We present electron transport data for two electron-conducting polymers often applied in all-polymer solar cells for a large variety of layer thicknesses and temperatures. The results can be explained by established exponential trapping models. Y1 - 2009 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.3086307 SN - 0021-8979 ER - TY - JOUR A1 - Zen, Achmad A1 - Bilge, Askin A1 - Galbrecht, Frank A1 - Alle, Ronald A1 - Meerholz, Klaus A1 - Grenzer, Jörg A1 - Neher, Dieter A1 - Scherf, Ullrich A1 - Farrell, Tony T1 - Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform Y1 - 2006 UR - http://pubs.acs.org/doi/full/10.1021/ja0573357 U6 - https://doi.org/10.1021/Ja0573357 ER - TY - JOUR A1 - Ilnytskyi, Jaroslav A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Photo-induced deformations in azobenzene-containing side-chain polymers : molecular dynamics study N2 - We perform molecular dynamics simulations of azobenzene containing side-chain liquid crystalline polymer subject to an external model field that mimicks the reorientations of the azobenzenes upon irradiation with polarized light. The smectic phase of the polymer is studied with the field applied parallel to the nematic director, forcing the trans isomers to reorient perpendicularly to the field (the direction of which can be assosiated with the light polarization). The coupling between the reorientation of azobenzenes and mechanical deformation of the sample is found to depend on the field strength. In a weak field the original smectic order is melted gradually with no apparent change in the simulation box shape, whereas in a strong field two regimes are observed. During the first one a rapid melting of the liquid crystalline order is accompanied by the contraction of the polymer along the field direction (the effect similar to the one observed experimentally in azopenzene containing elastomers). During the slower second regime, the smectic layers are rebuilt to accomodate the preferential direction of chromophores perperdicular to the field. Y1 - 2006 UR - http://www.icmp.lviv.ua/journal/Contents.html SN - 1607-324X ER - TY - JOUR A1 - Yang, Xiaohui A1 - Müller, David C. A1 - Neher, Dieter A1 - Meerholz, Klaus T1 - Highly efficient polymeric electrophosphorescent diodes N2 - Polymeric electrophosphorescent LEDs with internal quantum efficiencies approaching unity have been fabricated. Such performance levels are previously unknown for OLEDs. The key to this success is redox chemically doped oxetane- crosslinkable hole-transporting layers with multilayer capability (see figure). They improve hole injection and act as electron-blocking layers, without the need to include exciton-or hole-blocking layers Y1 - 2006 UR - 1960 = DOI: 10.1002/adma.200501867 ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Galbrecht, Frank A1 - Scherf, Ullrich T1 - Efficient polymer electrophosphoreseent devices with interfacial layers JF - Advanced functional materials N2 - It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 %) and a maximum power-conversion efficiency of 5 Im W-1 can be realized. Y1 - 2006 U6 - https://doi.org/10.1002/adfm.200500834 SN - 1616-301X SN - 1616-3028 VL - 16 IS - 16 SP - 2156 EP - 2162 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Luszczynska, Beata A1 - Dobruchowska, Ewa A1 - Glowacki, Ireneusz A1 - Ulanski, Jacek A1 - Jaiser, Frank A1 - Yang, Xiaohui A1 - Neher, Dieter A1 - Danel, Andrzej T1 - Poly(N-vinylcarbazole) doped with a pyrazoloquinoline dye : a deep blue light-emitting composite for light- emitting diode applications N2 - We investigated the spectral properties of light-emitting diodes based on a deep blue-emitting pyrazoloquinoline dye doped into a poly(N-vinylcarbazole)-based matrix. Even though the electroluminescence (EL) of the host is redshifted and broadened with respect to the emission of the dye, the EL spectrum becomes fully dominated by the dye emission at concentrations of ca. 2 wt %. This is attributed to a competition of exciplex formation on the matrix and exciton formation on the dye. Y1 - 2006 UR - http://jap.aip.org/ U6 - https://doi.org/10.1063/1.2162268 SN - 0021-8979 ER - TY - JOUR A1 - Yang, X. H. A1 - Jaiser, Frank A1 - Klinger, S A1 - Neher, Dieter T1 - Blue polymer electrophosphorescent devices with different electron-transporting oxadiazoles N2 - We report that the performances of blue polymer electrophosphorescent devices are crucially depending on the choice of the electron transporting material incorporated into the emissive layer. Devices with 1,3-bis[(4-tert- butylphenyl)-1,3,4-oxidiazolyl]phenylene (OXD-7) doped at similar to 40 wt% into a poly(vinylcarbazole) matrix exhibited significantly higher efficiencies than those with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), yielding maximum luminous and power efficiency values of 18.2 Cd/A and 8.8 lm/W, respectively. Time resolved photoluminescence measurements revealed a long lifetime phosphorescence component in layers with PBD, which we assign to significant triplet harvesting by this electron-transporting component. (c) 2006 American Institute of Physics Y1 - 2006 UR - http://scitation.aip.org/getpdf/servlet/ GetPDFServlet?filetype=pdf&id=APPLAB000088000002021107000001&idtype=cvips&doi=10.1063/1.2162693&prog=normal U6 - https://doi.org/10.1063/1.2162693 ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Molecular tracer diffusion in thin azobenzene polymer layers JF - Applied physics letters N2 - Translational diffusion of fluorescent tracer molecules in azobenzene polymer layers is studied at different temperatures and under illumination using the method of fluorescence recovery after photobleaching. Diffusion is clearly observed in the dark above the glass transition temperature, while homogeneous illumination at 488 nm and 100 mW/cm(2) does not cause any detectable diffusion of the dye molecules within azobenzene layers. This implies that the viscosity of azobenzene layers remains nearly unchanged under illumination with visible light in the absence of internal or external forces. (c) 2006 American Institute of Physics. Y1 - 2006 U6 - https://doi.org/10.1063/1.2405853 SN - 0003-6951 VL - 89 IS - 25 PB - Elsevier CY - Melville ER - TY - JOUR A1 - Zen, Achmad A1 - Neher, Dieter A1 - Silmy, Kamel A1 - Hollander, A. A1 - Asawapirom, Udom A1 - Scherf, Ullrich T1 - Improving the performance of organic field effect transistor by optimizing the gate insulator surface N2 - The effect of oxygen plasma treatment and/or silanization with hexamethyldisilazane (HMDS) on the surface chemistry and the morphology of the SiO2-gate insulator were studied with respect to the performance of organic field effect transistors. Using X-ray photoelectron spectroscopy (XPS), it is shown that silanization leads to the growth of a polysiloxane interfacial layer and that longer silanization times increase the thickness of this layer. Most important, silanization reduces the signal from surface contaminations such as oxidized hydrocarbon molecules. In fact, the lowest concentration of these contaminations was found after a combined oxygen plasma/silanization treatment. The results of these investigations were correlated with the characteristic device parameters of polymer field effect transistors with poly(3-hexylthiophene)s as the semiconducting layer. We found that the field effect mobility correlates with the concentration of contaminations as measured by XPS. We, finally, demonstrate that silanization significantly improves the operational stability of the device in air compared to the untreated devices Y1 - 2005 ER - TY - JOUR A1 - Kietzke, Thomas A1 - Horhold, H. H. A1 - Neher, Dieter T1 - Efficient polymer solar cells based on M3EH-PPV N2 - We report on polymer blend solar cells with an external quantum efficiency of more than 30% and a hi-h overall energy conversion efficiency (ECE) under white light illumination (100 mW/cm(2)) Of Lip to 1.7% using a blend of M3EH- PPV (poly [2,5-dimethoxy-1,4-phenylene-1,2-ethenylene-2-methoxy-5(2-ethylhexyloxy)-(1,4-pheiiylene-1,2-ethenylene)]) and CN-ether-PPV (poly[oxa-1,4-phenylene-1,2(1-cyano)ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)ethellyiene-1,4- phenylene]). We attribute these high efficiencies to the formation of a vertically composition graded structure during spin coating Photoluminescence measurements performed on the blend layers indicated the formation of exciplexes between both types of polymers, which we propose to be one factor preventing even higher efficiencies Y1 - 2005 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Carbonnier, B. A1 - Paul, E. L. A1 - Muhlbacher, D. A1 - Kietzke, Thomas A1 - Birckner, Eckhard A1 - Neher, Dieter A1 - Grummt, U. W. A1 - Pakula, T. T1 - Diyne-containing PPVs : Solid-state properties and comparison of their photophysical and electrochemical properties with those of their Yne-containing counterparts N2 - Diyne-containing poly(p-phenylene-vinylene)s, 4a-d, of general chemical structure-(Ph-C&3bond; C-C&3bond; C-Ph- CH&3bond; CH-Ph-CH&3bond; CH-)(n), obtained through polycondensation reactions of 1,4-bis(4-formyl-2,5-dioctyloxyphenyl)- buta-1,3-diyne (2) with various 2,5-dialkoxy-p-xylylenebis(diethylphosphonates), 3a-d, are the subject of this report. The polymers exhibit great disparity in their degree of polymerization, n, which might be ascribed to side-chain-related differences in reactivity of the reactive species during the polycondensation process and which led to n-dependent absorption (solution and solid state) and emission (solution) behaviors of the polymers. Polarizing optical microscopy and differential scanning calorimetry are employed to probe their thermal behavior. The structure is investigated by means of wide-angle X-ray diffraction for both isotropic and macroscopically oriented samples. Comparison of photophysical (experimental and theoretical) and electrochemical properties of the polymers with those of their yne- containing counterparts 6a-d [-(Ph-C&3bond; C-Ph-CH&3bond; CH-Ph-CH&3bond; CH-)(n)] has been carried out. Similar photophysical behavior was observed for both types of polymers despite the difference in backbone conjugation pattern. The introduction of a second yne unit in 4 lowers the HOMO and LUMO levels, thereby enhancing the electron affinity of polymers 4 compared to polymers 6. The "wider opening" introduced by the second yne unit facilitates moreover the movement of charges during the electrochemical processes leading to minimal discrepancy, Delta E-g between the optical and electrochemical band gap energies. Polymers 6, in contrast, show significant side-chain-dependent Delta E-g values. Low turn-on voltages between 2 and 3 V and maximal luminous efficiencies between 0.32 and 1.25 cd/A were obtained from LED devices of configuration ITO/PEDOT:PSS/polymer 4/Ca/Al Y1 - 2005 SN - 0024-9297 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Ulbricht, C. A1 - Orgis, Thomas A1 - Carbonnier, B. A1 - Kietzke, Thomas A1 - Peip, M. A1 - Metzner, M. A1 - Gericke, M. A1 - Birckner, Eckhard A1 - Pakula, T. A1 - Neher, Dieter A1 - Grumm, U. W. T1 - Odd-even effects and the influence of length and specific positioning of alkoxy side chains on the optical properties of PPE-PPV polymers N2 - This contribution reports the combined influences of odd-even effects and the specific positioning of alkoxy side chains OR1 = (OCn+H-10(2(n+10)+1)) and OR2 = (OCnH2n+1) (with n = 6, 7, 8, 9) on the phenylene-ethynylene and phenylene- vinylene segments, respectively, on the optical properties of hybrid polymers P(n+10)/n of general repeating unit: -Ph-C equivalent to C-Ph-C equivalent to C-Ph-CH=CH-Ph-CH=CH-. For the polymeric materials, visual color impression varies alternatively between orange red (P16/6 and P18/8) and yellow (P17/7 and P19/9) according to the odd and even features of the alkoxy side chains, where odd or even relates to the total number of sp(3)-hybridized atoms within the side chains. This side chain related effect is ascribed to both absorptive and emissive behaviors of the polymers on the basis of photophysical investigations in the bulk. Almost identical thin film absorption spectra were obtained for all four materials; however, the photoluminescence of the odd polymers, P16/6 (lambda(f) = 556 nm) and P18/ 8 (lambda(f) = 614 nm), was red-shifted relative to that of their even counterparts (lambda(f) = 535 nm). Further, the P18/8 maximum at 614 nm can be readily assigned to excimer emission, as evidenced by the largest Stokes shift (5600 cm(- 1)), largest fwhmf-value (3700 cm(-1))(,) and the lowest Phi(f)-value of 24%. The strong pi-pi interchain interaction in P18/8, due to loose alkoxy side chains packing, does not only favor fluorescence quenching but also enable an effective inter- as well as intra-molecular recombination of the generated positive and negative polarons in electrolurninescence, which explains the good EL properties of this polymer irrespective of the solvent used. A voltage-dependent blue shift of the EL spectra of up to 100 nm was observed for P18/8 devices prepared from aromatic solvents. This red to green EL shift as observed with increasing voltage is assigned to conformational changes of the polymer chains with increasing temperature Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Kietzke, Thomas A1 - Stiller, Burkhard A1 - Landfester, Katharina A1 - Montenegro, Rivelino V. D. A1 - Neher, Dieter T1 - Probing the local optical properties of layers prepared from polymer nanoparticles N2 - It is well known that the performance of solar cells based on a blend of hole-accepting and electron-accepting conjugated polymers as the active material depend crucially on the length scale of the resulting phase separated morphology. However, a direct control of this morphology is difficult if the layer is prepared from an organic solvent. To circumvent this difficulty, recently a universal method to fabricate defined nano-structured blend layer using nanoparticles dispersed in water was demonstrated. These nanoparticles were prepared with the miniemulsion method, which allows for the preparation of semiconducting polymer nanospheres (SPNs) with diameters in the range of 30 to 300 nanometres. Since the process starts from the active material dissolved in a common solvent, it can be applied to the fabrication of nanoparticles of blends of polymers with oligomers or even with inorganic materials. We present here for the first time scanning near field optical microscopy (SNOM) investigations on these novel nanostructured polymer layers. We show that by spin-coating a mixture of two different dispersions a nanoparticle monolayer with a statistically distribution of the nanoparticles can be obtained. Mixing conjugated polymer nanoparticles with some inert particles like polystyrene beads may allow for the preparation of nano-sized light emitters Y1 - 2005 SN - 0379-6779 ER - TY - JOUR A1 - Karageorgiev, Peter A1 - Neher, Dieter A1 - Schulz, Burkhard A1 - Stiller, Burkhard A1 - Pietsch, Ullrich A1 - Giersig, Michael A1 - Brehmer, Ludwig T1 - From anisotropic photo-fluidity towards nanomanipulation in the optical near-field N2 - An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated Y1 - 2005 SN - 1476-1122 ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Dielectric and mechanical properties of azobenzene polymer layers under visible and ultraviolet irradiation N2 - Photoinduced changes in the mechanical and dielectric properties of azobenzene polymer films were measured utilizing the method of electromechanical spectroscopy. The measurements revealed a strong correlation between the time- dependent behavior of the plate compliance and the dielectric constant under irradiation. Actinic light causes a light softening of the film that also manifests itself in the increase of the dielectric constant, whereas ultraviolet irradiation results in an initial plasticization of the film followed by its hardening. The latter is accompanied by decrease of the dielectric constant. A semiquantitative model based on the kinetics of the photoisomerization process in azobenzene polymers is proposed. We assume that both visible and ultraviolet irradiation increase the free volume in the layer due to photoisomerization. Additionally, ultraviolet light increases the modulus of the polymer matrix due to the presence of a high density of azobenzene moieties in the cis state. These assumptions allowed us to reproduce the time- dependent behavior of the bulk compliance as well as the dielectric constant at different irradiation intensities, for both visible and ultraviolet light, with only two adjustable parameters Y1 - 2005 SN - 0024-9297 ER - TY - JOUR A1 - Zen, Achmad A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Asawapirom, Udom A1 - Scherf, Ullrich T1 - Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s N2 - The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performances Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films N2 - It was discovered 10 years ago that the exposure of an initially flat layer of an azobenzene-containing polymer to an inhomogeneous light pattern leads to the formation of surface relief structures, accompanied by a mass transport over several micrometers. However, the driving force of this process is still unclear. We propose a new thermodynamic approach that explains a number of experimental findings including the light-induced deformation of free-standing films and the formation of surface relief gratings for main inscription geometries. Our basic assumption is that under homogeneous illumination, an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. The magnitude of the elastic stress, estimated by taking the derivative of the free energy over the sample deformation, is shown to be sufficient to induce plastic deformation of the polymer film. Orientational distributions of chromophores predicted by our model are compared with those deduced from Raman intensity measurements Y1 - 2005 SN - 1520-6106 ER -