TY - JOUR A1 - Pingel, Patrick A1 - Arvind, Malavika A1 - Kölln, Lisa A1 - Steyrleuthner, Robert A1 - Kraffert, Felix A1 - Behrends, Jan A1 - Janietz, Silvia A1 - Neher, Dieter T1 - p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane JF - Advanced electronic materials N2 - State-of-the-art p-type doping of organic semiconductors is usually achieved by employing strong -electron acceptors, a prominent example being tetrafluorotetracyanoquinodimethane (F(4)TCNQ). Here, doping of the semiconducting model polymer poly(3-hexylthiophene), P3HT, using the strong Lewis acid tris(pentafluorophenyl)borane (BCF) as a dopant, is investigated by admittance, conductivity, and electron paramagnetic resonance measurements. The electrical characteristics of BCF- and F(4)TCNQ-doped P3HT layers are shown to be very similar in terms of the mobile hole density and the doping efficiency. Roughly 18% of the employed dopants create mobile holes in either F-4 TCNQ- or BCF-doped P3HT, while the majority of doping-induced holes remain strongly Coulomb-bound to the dopant anions. Despite similar hole densities, conductivity and hole mobility are higher in BCF-doped P3HT layers than in F(4)TCNQ-doped samples. This and the good solubility in many organic solvents render BCF very useful for p-type doping of organic semiconductors. KW - charge carrier transport KW - charge transfer KW - conductivity KW - molecular doping KW - organic semiconductors Y1 - 2016 U6 - https://doi.org/10.1002/aelm.201600204 SN - 2199-160X VL - 2 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Di Pietro, Riccardo A1 - Nasrallah, Iyad A1 - Carpenter, Joshua A1 - Gann, Eliot A1 - Kölln, Lisa Sophie A1 - Thomsen, Lars A1 - Venkateshvaran, Deepak A1 - Sadhanala, Aditya A1 - Chabinyc, Michael A1 - McNeill, Christopher R. A1 - Facchetti, Antonio A1 - Ade, Harald W. A1 - Sirringhaus, Henning A1 - Neher, Dieter T1 - Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductors JF - Advanced functional materials Y1 - 2016 U6 - https://doi.org/10.1002/adfm.201602080 SN - 1616-301X SN - 1616-3028 VL - 26 SP - 8011 EP - 8022 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents JF - Scientific reports N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit a to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. Y1 - 2016 U6 - https://doi.org/10.1038/srep24861 SN - 2045-2322 VL - 6 SP - E2348 EP - E2349 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hahn, Tobias A1 - Tscheuschner, Steffen A1 - Saller, Christina A1 - Strohriegl, Peter A1 - Boregowda, Puttaraju A1 - Mukhopadhyay, Tushita A1 - Patil, Satish A1 - Neher, Dieter A1 - Bässler, Heinz A1 - Köhler, Anna T1 - Role of Intrinsic Photogeneration in Single Layer and Bilayer Solar Cells with C-60 and PCBM JF - The journal of physical chemistry : C, Nanomaterials and interfaces Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b08471 SN - 1932-7447 VL - 120 SP - 25083 EP - 25091 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mueller, Lars A1 - Nanova, Diana A1 - Glaser, Tobias A1 - Beck, Sebastian A1 - Pucci, Annemarie A1 - Kast, Anne K. A1 - Schroeder, Rasmus R. A1 - Mankel, Eric A1 - Pingel, Patrick A1 - Neher, Dieter A1 - Kowalsky, Wolfgang A1 - Lovrincic, Robert T1 - Charge-Transfer-Solvent Interaction Predefines Doping Efficiency in p-Doped P3HT Films JF - Chemistry of materials : a publication of the American Chemical Society N2 - Efficient electrical doping of organic semiconductors is a necessary prerequisite for the fabrication of high performance organic electronic devices. In this work, we study p-type doping of poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) spin-cast from two different solvents. Using electron diffraction, we find strong dopant-induced pi-pi-stacking for films from the solvent chloroform, but not from chlorobenzene. This image is confirmed and expanded by the analysis of vibrational features of P3HT and polaron absorptions using optical spectroscopy. Here, a red-shifted polaron absorption is found in doped films from chloroform, caused by a higher conjugation length of the polymer backbone. These differences result in a higher conductivity of films from chloroform. We use optical spectroscopy on the corresponding blend solutions to shed light on the origin of this effect and propose a model to explain why solutions of doped P3HT reveal more aggregation of charged molecules in chlorobenzene, whereas more order is finally observed in dried films from chloroform. Our study emphasizes the importance of solvent parameters exceeding the bare solubility of pure dopant and host material for the preparation of highly conductive doped films. Y1 - 2016 U6 - https://doi.org/10.1021/acs.chemmater.6b01629 SN - 0897-4756 SN - 1520-5002 VL - 28 SP - 4432 EP - 4439 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend N2 - Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 228 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91541 ER - TY - GEN A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 225 KW - Electronic and spintronic devices KW - Semiconductors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91414 ER - TY - JOUR A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend JF - Scientific reports N2 - Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. Y1 - 2016 U6 - https://doi.org/10.1038/srep26832 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents JF - Scientific reports N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. KW - Electronic and spintronic devices KW - Semiconductors Y1 - 2016 U6 - https://doi.org/10.1038/srep24861 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Dispersive Non-Geminate Recombination in an Amorphous Polymer: Fullerene Blend JF - Scientific reports N2 - Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer: fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. Y1 - 2016 U6 - https://doi.org/10.1038/srep26832 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER -