TY - JOUR A1 - Kegelmann, Lukas A1 - Tockhorn, Philipp A1 - Wolff, Christian Michael A1 - Márquez, José A. A1 - Caicedo Dávila, Sebastián A1 - Korte, Lars A1 - Unold, Thomas A1 - Loevenich, Wilfried A1 - Neher, Dieter A1 - Rech, Bernd A1 - Albrecht, Steve T1 - Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells JF - ACS applied materials & interfaces N2 - Doped spiro-OMeTAD at present is the most commonly used hole transport material (HTM) in n-i-p-type perovskite solar cells, enabling high efficiencies around 22%. However, the required dopants were shown to induce nonradiative recombination of charge carriers and foster degradation of the solar cell. Here, in a novel approach, highly conductive and inexpensive water-free poly(3,4-ethylenedioxythiophene) (PEDOT) is used to replace these dopants. The resulting spiro-OMeTAD/PEDOT (SpiDOT) mixed films achieve higher lateral conductivities than layers of doped spiro-OMeTAD. Furthermore, combined transient and steady-state photoluminescence studies reveal a passivating effect of PEDOT, suppressing nonradiative recombination losses at the perovskite/HTM interface. This enables excellent quasi-Fermi level splitting values of up to 1.24 eV in perovskite/SpiDOT layer stacks and high open-circuit voltages (V-OC) up to 1.19 V in complete solar cells. Increasing the amount of dopant-free spiro-OMeTAD in SpiDOT layers is shown to enhance hole extraction and thereby improves the fill factor in solar cells. As a consequence, stabilized efficiencies up to 18.7% are realized, exceeding cells with doped spiro-OMeTAD as a HTM in this study. Moreover, to the best of our knowledge, these results mark the lowest nonradiative recombination loss in the V-OC (140 mV with respect to the Shockley-Queisser limit) and highest efficiency reported so far for perovskite solar cells using PEDOT as a HTM. KW - perovskite solar cell KW - selective contact KW - spiro-OMeTAD KW - PEDOT KW - recombination KW - passivation KW - quasi-Fermi level splitting Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01332 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 9 SP - 9172 EP - 9181 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tockhorn, Philipp A1 - Sutter, Johannes A1 - Cruz Bournazou, Alexandros A1 - Wagner, Philipp A1 - Jäger, Klaus A1 - Yoo, Danbi A1 - Lang, Felix A1 - Grischek, Max A1 - Li, Bor A1 - Li, Jinzhao A1 - Shargaieva, Oleksandra A1 - Unger, Eva A1 - Al-Ashouri, Amran A1 - Köhnen, Eike A1 - Stolterfoht, Martin A1 - Neher, Dieter A1 - Schlatmann, Rutger A1 - Rech, Bernd A1 - Stannowski, Bernd A1 - Albrecht, Steve A1 - Becker, Christiane T1 - Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells JF - Nature nanotechnology N2 - Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells
Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%. Y1 - 2022 U6 - https://doi.org/10.1038/s41565-022-01228-8 SN - 1748-3387 SN - 1748-3395 VL - 17 IS - 11 SP - 1214 EP - 1221 PB - Nature Publishing Group CY - London [u.a.] ER -