TY - JOUR A1 - Perdigon-Toro, Lorena A1 - Le Quang Phuong, A1 - Eller, Fabian A1 - Freychet, Guillaume A1 - Saglamkaya, Elifnaz A1 - Khan, Jafar A1 - Wei, Qingya A1 - Zeiske, Stefan A1 - Kroh, Daniel A1 - Wedler, Stefan A1 - Koehler, Anna A1 - Armin, Ardalan A1 - Laquai, Frederic A1 - Herzig, Eva M. A1 - Zou, Yingping A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Understanding the role of order in Y-series non-fullerene solar cells to realize high open-circuit voltages JF - Advanced energy materials N2 - Non-fullerene acceptors (NFAs) as used in state-of-the-art organic solar cells feature highly crystalline layers that go along with low energetic disorder. Here, the crucial role of energetic disorder in blends of the donor polymer PM6 with two Y-series NFAs, Y6, and N4 is studied. By performing temperature-dependent charge transport and recombination studies, a consistent picture of the shape of the density of state distributions for free charges in the two blends is developed, allowing an analytical description of the dependence of the open-circuit voltage V-OC on temperature and illumination intensity. Disorder is found to influence the value of the V-OC at room temperature, but also its progression with temperature. Here, the PM6:Y6 blend benefits substantially from its narrower state distributions. The analysis also shows that the energy of the equilibrated free charge population is well below the energy of the NFA singlet excitons for both blends and possibly below the energy of the populated charge transfer manifold, indicating a down-hill driving force for free charge formation. It is concluded that energetic disorder of charge-separated states has to be considered in the analysis of the photovoltaic properties, even for the more ordered PM6:Y6 blend. KW - energetic disorder KW - non-fullerene acceptors KW - open-circuit voltage KW - organic solar cells Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202103422 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 12 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Scharsich, Christina A1 - Lohwasser, Ruth H. A1 - Sommer, Michael A1 - Asawapirom, Udom A1 - Scherf, Ullrich A1 - Thelakkat, Mukundan A1 - Neher, Dieter A1 - Koehler, Anna T1 - Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method JF - Journal of polymer science : B, Polymer physics N2 - Aggregate formation in poly(3-hexylthiophene) depends on molecular weight, solvent, and synthetic method. The interplay of these parameters thus largely controls device performance. In order to obtain a quantitative understanding on how these factors control the resulting electronic properties of P3HT, we measured absorption in solution and in thin films as well as the resulting field effect mobility in transistors. By a detailed analysis of the absorption spectra, we deduce the fraction of aggregates formed, the excitonic coupling within the aggregates, and the conjugation length within the aggregates, all as a function of solvent quality for molecular weights from 5 to 19 kDa. From this, we infer in which structure the aggregated chains pack. Although the 5 kDa samples form straight chains, the 11 and 19 kDa chains are kinked or folded, with conjugation lengths that increase as the solvent quality reduces. There is a maximum fraction of aggregated chains (about 55 +/- 5%) that can be obtained, even for poor solvent quality. We show that inducing aggregation in solution leads to control of aggregate properties in thin films. As expected, the field-effect mobility correlates with the propensity to aggregation. Correspondingly, we find that a well-defined synthetic approach, tailored to give a narrow molecular weight distribution, is needed to obtain high field effect mobilities of up to 0.01 cm2/Vs for low molecular weight samples (=11 kDa), while the influence of synthetic method is negligible for samples of higher molecular weight, if low molecular weight fractions are removed by extraction. KW - conformational analysis KW - conjugated polymers KW - crystallization KW - films KW - interaction parameter KW - molecular weight distribution KW - molar mass distribution KW - nucleation KW - photophysics KW - structure KW - UV-vis spectroscopy Y1 - 2012 U6 - https://doi.org/10.1002/polb.23022 SN - 0887-6266 VL - 50 IS - 6 SP - 442 EP - 453 PB - Wiley-Blackwell CY - Hoboken ER -