TY - JOUR A1 - Pingel, P. A1 - Neher, Dieter T1 - Comprehensive picture of p-type doping of P3HT with the molecular acceptor F(4)TCNQ JF - Physical review : B, Condensed matter and materials physics N2 - By means of optical spectroscopy, Kelvin probe, and conductivity measurements, we study the p-type doping of the donor polymer poly(3-hexylthiophene), P3HT, with the molecular acceptor tetrafluorotetracyanoquin-odimethane, F(4)TCNQ, covering a broad range of molar doping ratios from the ppm to the percent regime. Thorough quantitative analysis of the specific near-infrared absorption bands of ionized F(4)TCNQ reveals that almost every F(4)TCNQ dopant undergoes integer charge transfer with a P3HT site. However, only about 5% of these charge carrier pairs are found to dissociate and contribute a free hole for electrical conduction. The nonlinear behavior of the conductivity on doping ratio is rationalized by a numerical mobility model that accounts for the broadening of the energetic distribution of transport sites by the Coulomb potentials of ionized F(4)TCNQ dopants. DOI: 10.1103/PhysRevB.87.115209 Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevB.87.115209 SN - 1098-0121 VL - 87 IS - 11 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Hofmann, Alexander J. L. A1 - Züfle, Simon A1 - Shimizu, Kohei A1 - Schmid, Markus A1 - Wessels, Vivien A1 - Jäger, Lars A1 - Altazin, Stephane A1 - Ikegami, Keitaro A1 - Khan, Motiur Rahman A1 - Neher, Dieter A1 - Ishii, Hisao A1 - Ruhstaller, Beat A1 - Brütting, Wolfgang T1 - Dipolar Doping of Organic Semiconductors to Enhance Carrier Injection JF - Physical review applied N2 - If not oriented perfectly isotropically, the strong dipole moment of polar organic semiconductor materials such as tris-(8-hydroxyquinolate)aluminum (Alq3) will lead to the buildup of a giant surface potential (GSP) and thus to a macroscopic dielectric polarization of the organic film. Despite this having been a known fact for years, the implications of such high potentials within an organic layer stack have only been studied recently. In this work, the influence of the GSP on hole injection into organic layers is investigated. Therefore, we apply a concept called dipolar doping to devices consisting of the prototypical organic materials N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) as nonpolar host and Alq3 as dipolar dopant with different mixing ratios to tune the GSP. The mixtures are investigated in single-layer monopolar devices as well as bilayer metal/insulator/semiconductor structures. Characterization is done electrically using current-voltage (I-V) characteristics, impedance spectroscopy, and charge extraction by linearly increasing voltage and time of flight, as well as with ultraviolet photoelectron spectroscopy. We find a maximum in device performance for moderate to low doping concentrations of the polar species in the host. The observed behavior can be described on the basis of the Schottky effect for image-force barrier lowering, if the changes in the interface dipole, the carrier mobility, and the GSP induced by dipolar doping are taken into account. KW - Carrier dynamics KW - Electric polarization KW - Optoelectronics KW - Organic electronics KW - Doped semiconductors KW - Interfaces KW - Organic LEDs KW - Organic semiconductors Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevApplied.12.064052 SN - 2331-7019 VL - 12 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Laquai, Frederic A1 - Andrienko, Denis A1 - Deibel, Carsten A1 - Neher, Dieter T1 - Charge carrier generation, recombination, and extraction in polymer-fullerene bulk heterojunction organic solar cells JF - Elementary processes in organic photovoltaics N2 - In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer-fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency. KW - Charge extraction KW - Charge generation KW - Charge recombination KW - Organic solar cells KW - PBT7 KW - PBTTT KW - PCPDTBT Y1 - 2026 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_11 SN - 0065-3195 VL - 272 SP - 267 EP - 291 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hahn, Tobias A1 - Tscheuschner, Steffen A1 - Saller, Christina A1 - Strohriegl, Peter A1 - Boregowda, Puttaraju A1 - Mukhopadhyay, Tushita A1 - Patil, Satish A1 - Neher, Dieter A1 - Bässler, Heinz A1 - Köhler, Anna T1 - Role of Intrinsic Photogeneration in Single Layer and Bilayer Solar Cells with C-60 and PCBM JF - The journal of physical chemistry : C, Nanomaterials and interfaces Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b08471 SN - 1932-7447 VL - 120 SP - 25083 EP - 25091 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yuan, Jun A1 - Zhang, Chujun A1 - Qiu, Beibei A1 - Liu, Wei A1 - So, Shu Kong A1 - Mainville, Mathieu A1 - Leclerc, Mario A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Zou, Yingping T1 - Effects of energetic disorder in bulk heterojunction organic solar cells JF - Energy & environmental science N2 - Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed. Y1 - 2022 U6 - https://doi.org/10.1039/d2ee00271j SN - 1754-5692 SN - 1754-5706 VL - 15 IS - 7 SP - 2806 EP - 2818 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mueller, Lars A1 - Nanova, Diana A1 - Glaser, Tobias A1 - Beck, Sebastian A1 - Pucci, Annemarie A1 - Kast, Anne K. A1 - Schroeder, Rasmus R. A1 - Mankel, Eric A1 - Pingel, Patrick A1 - Neher, Dieter A1 - Kowalsky, Wolfgang A1 - Lovrincic, Robert T1 - Charge-Transfer-Solvent Interaction Predefines Doping Efficiency in p-Doped P3HT Films JF - Chemistry of materials : a publication of the American Chemical Society N2 - Efficient electrical doping of organic semiconductors is a necessary prerequisite for the fabrication of high performance organic electronic devices. In this work, we study p-type doping of poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) spin-cast from two different solvents. Using electron diffraction, we find strong dopant-induced pi-pi-stacking for films from the solvent chloroform, but not from chlorobenzene. This image is confirmed and expanded by the analysis of vibrational features of P3HT and polaron absorptions using optical spectroscopy. Here, a red-shifted polaron absorption is found in doped films from chloroform, caused by a higher conjugation length of the polymer backbone. These differences result in a higher conductivity of films from chloroform. We use optical spectroscopy on the corresponding blend solutions to shed light on the origin of this effect and propose a model to explain why solutions of doped P3HT reveal more aggregation of charged molecules in chlorobenzene, whereas more order is finally observed in dried films from chloroform. Our study emphasizes the importance of solvent parameters exceeding the bare solubility of pure dopant and host material for the preparation of highly conductive doped films. Y1 - 2016 U6 - https://doi.org/10.1021/acs.chemmater.6b01629 SN - 0897-4756 SN - 1520-5002 VL - 28 SP - 4432 EP - 4439 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Benduhn, Johannes A1 - Piersimoni, Fortunato A1 - Londi, Giacomo A1 - Kirch, Anton A1 - Widmer, Johannes A1 - Koerner, Christian A1 - Beljonne, David A1 - Neher, Dieter A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Impact of triplet excited states on the open-circuit voltage of organic solar cells JF - dvanced energy materials N2 - The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn- and Cu-phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C-60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T-1) and the charge-transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin-orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T-1 and the CT state does not substantially affect nonradiative voltage losses. KW - charge-transfer states KW - nonradiative voltage losses KW - organic solar cells KW - triplet excited states Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201800451 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 21 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hörmann, Ulrich A1 - Zeiske, Stefan A1 - Piersimoni, Fortunato A1 - Hoffmann, Lukas A1 - Schlesinger, Raphael A1 - Koch, Norbert A1 - Riedl, Thomas A1 - Andrienko, Denis A1 - Neher, Dieter T1 - Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the bias dependence of the hybrid charge transfer state emission at planar heterojunctions between the metal oxide acceptor ZnO and three donor molecules. The electroluminescence peak energy linearly increases with the applied bias, saturating at high fields. Variation of the organic layer thickness and deliberate change of the ZnO conductivity through controlled photodoping allow us to confirm that this bias-induced spectral shift relates to the internal electric field in the organic layer rather than the filling of states at the hybrid interface. We show that existing continuum models overestimate the hole delocalization and propose a simple electrostatic model in which the linear and quadratic Stark effects are explained by the electrostatic interaction of a strongly polarizable molecular cation with its mirror image. Y1 - 2018 U6 - https://doi.org/10.1103/PhysRevB.98.155312 SN - 2469-9950 SN - 2469-9969 VL - 98 IS - 15 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mansour, Ahmed E. A1 - Lungwitz, Dominique A1 - Schultz, Thorsten A1 - Arvind, Malavika A1 - Valencia, Ana M. A1 - Cocchi, Caterina A1 - Opitz, Andreas A1 - Neher, Dieter A1 - Koch, Norbert T1 - The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl) BT - individual polymer chains versus aggregates JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Optical absorption spectroscopy is a key method to investigate doped conjugated polymers and to characterize the doping-induced charge carriers, i.e., polarons. For prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT), the absorption intensity of molecular dopant induced polarons is widely used to estimate the carrier density and the doping efficiency, i.e., the number of polarons formed per dopant molecule. However, the dependence of the polaron-related absorption features on the structure of doped P3HT, being either aggregates or separated individual chains, is not comprehensively understood in contrast to the optical absorption features of neutral P3HT. In this work, we unambiguously differentiate the optical signatures of polarons on individual P3HT chains and aggregates in solution, notably the latter exhibiting the same shape as aggregates in solid thin films. This is enabled by employing tris(pentafluorophenyl)borane (BCF) as dopant, as this dopant forms only ion pairs with P3HT and no charge transfer complexes, and BCF and its anion have no absorption in the spectral region of P3HT polarons. Polarons on individual chains exhibit absorption peaks at 1.5 eV and 0.6 eV, whereas in aggregates the high-energy peak is split into a doublet 1.3 eV and 1.65 eV, and the low-energy peak is shifted below 0.5 eV. The dependence of the fraction of solvated individual chains versus aggregates on absolute solution concentration, dopant concentration, and temperature is elucidated, and we find that aggregates predominate in solution under commonly used processing conditions. Aggregates in BCF-doped P3HT solution can be effectively removed upon simple filtering. From varying the filter pore size (down to 200 nm) and thin film morphology characterization with scanning force microscopy we reveal the aggregates' size dependence on solution absolute concentration and dopant concentration. Furthermore, X-ray photoelectron spectroscopy shows that the dopant loading in aggregates is higher than for individual P3HT chains. The results of this study help understanding the impact of solution pre-aggregation on thin film properties of molecularly doped P3HT, and highlight the importance of considering such aggregation for other doped conjugated polymers in general. Y1 - 2020 U6 - https://doi.org/10.1039/c9tc06509a SN - 2050-7526 SN - 2050-7534 VL - 8 IS - 8 SP - 2870 EP - 2879 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend N2 - Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 228 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91541 ER - TY - GEN A1 - Liu, W. A1 - Tkachov, R. A1 - Komber, H. A1 - Senkovskyy, V. A1 - Schubert, M. A1 - Wei, Z. A1 - Facchetti, A. A1 - Neher, Dieter A1 - Kiriy, A. T1 - Chain-growth polycondensation of perylene diimide-based copolymers BT - a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors N2 - Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to Mw ≈ 50 kg mol−1 and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32–45%) in all-polymer solar cells compared to NDI-based materials (15–30%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 273 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98724 ER - TY - GEN A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 225 KW - Electronic and spintronic devices KW - Semiconductors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-91414 ER - TY - JOUR A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend JF - Scientific reports N2 - Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. Y1 - 2016 U6 - https://doi.org/10.1038/srep26832 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Neher, Dieter A1 - Kniepert, Juliane A1 - Elimelech, Arik A1 - Koster, L. Jan Anton T1 - A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents JF - Scientific reports N2 - Compared to their inorganic counterparts, organic semiconductors suffer from relatively low charge carrier mobilities. Therefore, expressions derived for inorganic solar cells to correlate characteristic performance parameters to material properties are prone to fail when applied to organic devices. This is especially true for the classical Shockley-equation commonly used to describe current-voltage (JV)-curves, as it assumes a high electrical conductivity of the charge transporting material. Here, an analytical expression for the JV-curves of organic solar cells is derived based on a previously published analytical model. This expression, bearing a similar functional dependence as the Shockley-equation, delivers a new figure of merit α to express the balance between free charge recombination and extraction in low mobility photoactive materials. This figure of merit is shown to determine critical device parameters such as the apparent series resistance and the fill factor. KW - Electronic and spintronic devices KW - Semiconductors Y1 - 2016 U6 - https://doi.org/10.1038/srep24861 SN - 2045-2322 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Ilnytskyi, Jaroslav A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Photo-induced deformations in azobenzene-containing side-chain polymers : molecular dynamics study N2 - We perform molecular dynamics simulations of azobenzene containing side-chain liquid crystalline polymer subject to an external model field that mimicks the reorientations of the azobenzenes upon irradiation with polarized light. The smectic phase of the polymer is studied with the field applied parallel to the nematic director, forcing the trans isomers to reorient perpendicularly to the field (the direction of which can be assosiated with the light polarization). The coupling between the reorientation of azobenzenes and mechanical deformation of the sample is found to depend on the field strength. In a weak field the original smectic order is melted gradually with no apparent change in the simulation box shape, whereas in a strong field two regimes are observed. During the first one a rapid melting of the liquid crystalline order is accompanied by the contraction of the polymer along the field direction (the effect similar to the one observed experimentally in azopenzene containing elastomers). During the slower second regime, the smectic layers are rebuilt to accomodate the preferential direction of chromophores perperdicular to the field. Y1 - 2006 UR - http://www.icmp.lviv.ua/journal/Contents.html SN - 1607-324X ER - TY - JOUR A1 - Kietzke, Thomas A1 - Horhold, H. H. A1 - Neher, Dieter T1 - Efficient polymer solar cells based on M3EH-PPV N2 - We report on polymer blend solar cells with an external quantum efficiency of more than 30% and a hi-h overall energy conversion efficiency (ECE) under white light illumination (100 mW/cm(2)) Of Lip to 1.7% using a blend of M3EH- PPV (poly [2,5-dimethoxy-1,4-phenylene-1,2-ethenylene-2-methoxy-5(2-ethylhexyloxy)-(1,4-pheiiylene-1,2-ethenylene)]) and CN-ether-PPV (poly[oxa-1,4-phenylene-1,2(1-cyano)ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)ethellyiene-1,4- phenylene]). We attribute these high efficiencies to the formation of a vertically composition graded structure during spin coating Photoluminescence measurements performed on the blend layers indicated the formation of exciplexes between both types of polymers, which we propose to be one factor preventing even higher efficiencies Y1 - 2005 ER - TY - JOUR A1 - Yang, Xiaohui A1 - Müller, David C. A1 - Neher, Dieter A1 - Meerholz, Klaus T1 - Highly efficient polymeric electrophosphorescent diodes N2 - Polymeric electrophosphorescent LEDs with internal quantum efficiencies approaching unity have been fabricated. Such performance levels are previously unknown for OLEDs. The key to this success is redox chemically doped oxetane- crosslinkable hole-transporting layers with multilayer capability (see figure). They improve hole injection and act as electron-blocking layers, without the need to include exciton-or hole-blocking layers Y1 - 2006 UR - 1960 = DOI: 10.1002/adma.200501867 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Carbonnier, B. A1 - Paul, E. L. A1 - Muhlbacher, D. A1 - Kietzke, Thomas A1 - Birckner, Eckhard A1 - Neher, Dieter A1 - Grummt, U. W. A1 - Pakula, T. T1 - Diyne-containing PPVs : Solid-state properties and comparison of their photophysical and electrochemical properties with those of their Yne-containing counterparts N2 - Diyne-containing poly(p-phenylene-vinylene)s, 4a-d, of general chemical structure-(Ph-C&3bond; C-C&3bond; C-Ph- CH&3bond; CH-Ph-CH&3bond; CH-)(n), obtained through polycondensation reactions of 1,4-bis(4-formyl-2,5-dioctyloxyphenyl)- buta-1,3-diyne (2) with various 2,5-dialkoxy-p-xylylenebis(diethylphosphonates), 3a-d, are the subject of this report. The polymers exhibit great disparity in their degree of polymerization, n, which might be ascribed to side-chain-related differences in reactivity of the reactive species during the polycondensation process and which led to n-dependent absorption (solution and solid state) and emission (solution) behaviors of the polymers. Polarizing optical microscopy and differential scanning calorimetry are employed to probe their thermal behavior. The structure is investigated by means of wide-angle X-ray diffraction for both isotropic and macroscopically oriented samples. Comparison of photophysical (experimental and theoretical) and electrochemical properties of the polymers with those of their yne- containing counterparts 6a-d [-(Ph-C&3bond; C-Ph-CH&3bond; CH-Ph-CH&3bond; CH-)(n)] has been carried out. Similar photophysical behavior was observed for both types of polymers despite the difference in backbone conjugation pattern. The introduction of a second yne unit in 4 lowers the HOMO and LUMO levels, thereby enhancing the electron affinity of polymers 4 compared to polymers 6. The "wider opening" introduced by the second yne unit facilitates moreover the movement of charges during the electrochemical processes leading to minimal discrepancy, Delta E-g between the optical and electrochemical band gap energies. Polymers 6, in contrast, show significant side-chain-dependent Delta E-g values. Low turn-on voltages between 2 and 3 V and maximal luminous efficiencies between 0.32 and 1.25 cd/A were obtained from LED devices of configuration ITO/PEDOT:PSS/polymer 4/Ca/Al Y1 - 2005 SN - 0024-9297 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Ulbricht, C. A1 - Orgis, Thomas A1 - Carbonnier, B. A1 - Kietzke, Thomas A1 - Peip, M. A1 - Metzner, M. A1 - Gericke, M. A1 - Birckner, Eckhard A1 - Pakula, T. A1 - Neher, Dieter A1 - Grumm, U. W. T1 - Odd-even effects and the influence of length and specific positioning of alkoxy side chains on the optical properties of PPE-PPV polymers N2 - This contribution reports the combined influences of odd-even effects and the specific positioning of alkoxy side chains OR1 = (OCn+H-10(2(n+10)+1)) and OR2 = (OCnH2n+1) (with n = 6, 7, 8, 9) on the phenylene-ethynylene and phenylene- vinylene segments, respectively, on the optical properties of hybrid polymers P(n+10)/n of general repeating unit: -Ph-C equivalent to C-Ph-C equivalent to C-Ph-CH=CH-Ph-CH=CH-. For the polymeric materials, visual color impression varies alternatively between orange red (P16/6 and P18/8) and yellow (P17/7 and P19/9) according to the odd and even features of the alkoxy side chains, where odd or even relates to the total number of sp(3)-hybridized atoms within the side chains. This side chain related effect is ascribed to both absorptive and emissive behaviors of the polymers on the basis of photophysical investigations in the bulk. Almost identical thin film absorption spectra were obtained for all four materials; however, the photoluminescence of the odd polymers, P16/6 (lambda(f) = 556 nm) and P18/ 8 (lambda(f) = 614 nm), was red-shifted relative to that of their even counterparts (lambda(f) = 535 nm). Further, the P18/8 maximum at 614 nm can be readily assigned to excimer emission, as evidenced by the largest Stokes shift (5600 cm(- 1)), largest fwhmf-value (3700 cm(-1))(,) and the lowest Phi(f)-value of 24%. The strong pi-pi interchain interaction in P18/8, due to loose alkoxy side chains packing, does not only favor fluorescence quenching but also enable an effective inter- as well as intra-molecular recombination of the generated positive and negative polarons in electrolurninescence, which explains the good EL properties of this polymer irrespective of the solvent used. A voltage-dependent blue shift of the EL spectra of up to 100 nm was observed for P18/8 devices prepared from aromatic solvents. This red to green EL shift as observed with increasing voltage is assigned to conformational changes of the polymer chains with increasing temperature Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Kurpiers, Jona A1 - Neher, Dieter T1 - Dispersive Non-Geminate Recombination in an Amorphous Polymer: Fullerene Blend JF - Scientific reports N2 - Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer: fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. Y1 - 2016 U6 - https://doi.org/10.1038/srep26832 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kietzke, Thomas A1 - Stiller, Burkhard A1 - Landfester, Katharina A1 - Montenegro, Rivelino V. D. A1 - Neher, Dieter T1 - Probing the local optical properties of layers prepared from polymer nanoparticles N2 - It is well known that the performance of solar cells based on a blend of hole-accepting and electron-accepting conjugated polymers as the active material depend crucially on the length scale of the resulting phase separated morphology. However, a direct control of this morphology is difficult if the layer is prepared from an organic solvent. To circumvent this difficulty, recently a universal method to fabricate defined nano-structured blend layer using nanoparticles dispersed in water was demonstrated. These nanoparticles were prepared with the miniemulsion method, which allows for the preparation of semiconducting polymer nanospheres (SPNs) with diameters in the range of 30 to 300 nanometres. Since the process starts from the active material dissolved in a common solvent, it can be applied to the fabrication of nanoparticles of blends of polymers with oligomers or even with inorganic materials. We present here for the first time scanning near field optical microscopy (SNOM) investigations on these novel nanostructured polymer layers. We show that by spin-coating a mixture of two different dispersions a nanoparticle monolayer with a statistically distribution of the nanoparticles can be obtained. Mixing conjugated polymer nanoparticles with some inert particles like polystyrene beads may allow for the preparation of nano-sized light emitters Y1 - 2005 SN - 0379-6779 ER - TY - JOUR A1 - Karageorgiev, Peter A1 - Neher, Dieter A1 - Schulz, Burkhard A1 - Stiller, Burkhard A1 - Pietsch, Ullrich A1 - Giersig, Michael A1 - Brehmer, Ludwig T1 - From anisotropic photo-fluidity towards nanomanipulation in the optical near-field N2 - An increase in random molecular vibrations of a solid owing to heating above the melting point leads to a decrease in its long-range order and a loss of structural symmetry. Therefore conventional liquids are isotropic media. Here we report on a light-induced isothermal transition of a polymer film from an isotropic solid to an anisotropic liquid state in which the degree of mechanical anisotropy can be controlled by light. Whereas during irradiation by circular polarized light the film behaves as an isotropic viscoelastic fluid, it shows considerable fluidity only in the direction parallel to the light field vector under linear polarized light. The fluidization phenomenon is related to photoinduced motion of azobenzene-functionalized molecular units, which can be effectively activated only when their transition dipole moments are oriented close to the direction of the light polarization. We also describe here how the photofluidization allows nanoscopic elements of matter to be precisely manipulated Y1 - 2005 SN - 1476-1122 ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Dielectric and mechanical properties of azobenzene polymer layers under visible and ultraviolet irradiation N2 - Photoinduced changes in the mechanical and dielectric properties of azobenzene polymer films were measured utilizing the method of electromechanical spectroscopy. The measurements revealed a strong correlation between the time- dependent behavior of the plate compliance and the dielectric constant under irradiation. Actinic light causes a light softening of the film that also manifests itself in the increase of the dielectric constant, whereas ultraviolet irradiation results in an initial plasticization of the film followed by its hardening. The latter is accompanied by decrease of the dielectric constant. A semiquantitative model based on the kinetics of the photoisomerization process in azobenzene polymers is proposed. We assume that both visible and ultraviolet irradiation increase the free volume in the layer due to photoisomerization. Additionally, ultraviolet light increases the modulus of the polymer matrix due to the presence of a high density of azobenzene moieties in the cis state. These assumptions allowed us to reproduce the time- dependent behavior of the bulk compliance as well as the dielectric constant at different irradiation intensities, for both visible and ultraviolet light, with only two adjustable parameters Y1 - 2005 SN - 0024-9297 ER - TY - JOUR A1 - Egbe, D. A. M. A1 - Kietzke, Thomas A1 - Carbonnier, B. A1 - Muhlbacher, D. A1 - Horhold, H. H. A1 - Neher, Dieter A1 - Pakula, T. T1 - Synthesis, characterization, and photophysical, electrochemical, electroluminescent, and photovoltaic properties of yne-containing CN-PPVs N2 - Alkoxy-substituted CN-containing phenylene-vinylene-alt-phenylene-ethynylene hybrid polymers (CN-PPV-PPE), 3a, 3b, and 7a, were obtained from luminophoric dialdehydes 1 by step growth polymerization via Knoevenagel reaction as high molecular-weight materials. Corresponding CN-free polymers 3c and 7b and an ethynylene-free polymer 5 with similar side chains were synthesized for the purpose of comparison. The chemical structures of the polymers were confirmed by IR, H-1 and C-13 NMR, and elemental analysis. Thermal characterization was conducted by means of thermogravimetric analysis and differential scanning calorimetry. Morphology was investigated by means of optical microscopy and small-angle light scattering. The final morphologies are determined by the molecular characteristics (side chains volume fraction, backbone stiffness) of the studied polymers. All the CN-containing polymers 3b, 5, and 7a exhibit higher fluorescence quantum yield in solid state (50 to 60%), but lower quantum yields (12-40%) in dilute chloroform solution, in total contrast to CN-free polymers 3c, 3d, and 7b. Identical optical, E-g(opt), and electrochemical band gap energies, E- g(ec), were obtained for 3b, 3c and 3d with intrinsic self-assembly ability, whereas a discrepancy, DeltaE(g), was observed in the cases of the fully substituted polymers 5, 7a, and 7b, whose values are dependent on the level of backbone stiffness and length of the side groups combined with the presence or absence of CN units. The incorporation of CN units in 3b and 7a lowers their respective LUMO level by 220 and 350 meV compared to their corresponding CN-free counterparts 3c and 7b, suggesting an improvement of the electron-accepting strength. Polymers 3b and 7a are efficient electron acceptors suitable for photovoltaic application. The experiments indicate that 3b is a better electron acceptor when used together with M3EH-PPV, but transport properties seem to be better for 7a. With 3b, high external quantum efficiencies of up to 23%, an open circuit voltage of up to 1.52 V, and a white light energy efficiency of 0.65% could be realized in bilayer solar cell devices. LED-devices of configuration ITO/PEDOT:PSS/polymer/Ca/Al from 3b, 3c, 7a, and 7b showed low turn-on voltages between 2 and 2.5 V. The CN-free polymers 3c and 7b exhibit far better EL parameters than their corresponding CN containing counterparts 3b and 7a Y1 - 2004 ER - TY - JOUR A1 - Zen, Achmad A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Asawapirom, Udom A1 - Scherf, Ullrich T1 - Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s N2 - The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performances Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Kietzke, Thomas A1 - Neher, Dieter A1 - Kumke, Michael Uwe A1 - Montenegro, Rivelino V. D. A1 - Landfester, Katharina A1 - Scherf, Ullrich T1 - A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices N2 - Polymer solar cell devices with nanostructured blend layers have been fabricated using single- and dual- component polymer nanospheres. Starting from an electron-donating and an electron-accepting polyfluorene derivative, PFB and F8BT, dissolved in suitable organic solvents, dispersions of solid particles with mean diameters of ca. 50 nm, containing either the pure polymer components or a mixture of PFB and F8BT in each particle, were prepared with the miniemulsion process. Photovoltaic devices based on these particles have been studied with respect to the correlation between external quantum efficiency and layer composition. It is shown that the properties of devices containing a blend of single-component PFB and F8BT particles differ significantly from those of solar cells based on blend particles, even for the same layer composition. Various factors determining the quantum efficiency in both kinds of devices are identified and discussed, taking into account the spectroscopic properties of the particles. An external quantum efficiency of ca. 4% is measured for a device made from polymer blend nanoparticles containing PFB:F8BT at a weight ratio of 1:2 in each individual nanosphere. This is among the highest values reported so far for photovoltaic cells using this material combination Y1 - 2004 ER - TY - JOUR A1 - Bagnich, Sergey A. A1 - Bassler, H. A1 - Neher, Dieter T1 - Sensitized phosphorescence of benzil-doped ladder-type methyl-poly(para-phenylene) N2 - The delayed luminescence and phosphorescence of ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with benzil at a concentration of 20% by weight has been measured. The introduction of benzil leads to a dramatic reduction of the polymer singlet emission. At the same time, a new band with maximum at 611 nm appears, corresponding to the phosphorescence of MeLPPP. The phosphorescence decay on the short time scale is close to an exponential law with a time decay of 15 ms. This indicates that benzil can efficiently sensitize the phosphorescence of the polymer. In addition, a broad and featureless emission is observed in the delayed luminescence spectra of benzil-doped MeLPPP, which is attributed to an exciplex formed between the polymer host and the dopant. We further observe that the delayed fluorescence is enhanced by the addition of benzil. It is concluded that the delayed fluorescence of benzil-doped MeLPPP is mainly due to the annihilation of triplet excitons on the polymer. Finally, efficient triplet-triplet energy transfer from the benzil-doped polymer to the red-emitting phosphorescent dye Pt(II)octaethylporphyrin is established. (C) 2004 American Institute of Physics Y1 - 2004 SN - 0021-9606 ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films N2 - It was discovered 10 years ago that the exposure of an initially flat layer of an azobenzene-containing polymer to an inhomogeneous light pattern leads to the formation of surface relief structures, accompanied by a mass transport over several micrometers. However, the driving force of this process is still unclear. We propose a new thermodynamic approach that explains a number of experimental findings including the light-induced deformation of free-standing films and the formation of surface relief gratings for main inscription geometries. Our basic assumption is that under homogeneous illumination, an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. The magnitude of the elastic stress, estimated by taking the derivative of the free energy over the sample deformation, is shown to be sufficient to induce plastic deformation of the polymer film. Orientational distributions of chromophores predicted by our model are compared with those deduced from Raman intensity measurements Y1 - 2005 SN - 1520-6106 ER - TY - JOUR A1 - Kulikovsky, Lazar A1 - Neher, Dieter A1 - Mecher, E. A1 - Meerholz, Klaus A1 - Horhold, H. H. A1 - Ostroverkhova, O. T1 - Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite N2 - All parameters describing the charge carrier dynamics in a poly(phenylene vinylene)-based photorefractive (PR) composite relevant to PR grating dynamics were determined using photoconductivity studies under various illumination conditions. In particular, the values of the coefficients for trap filling and recombination of charges with ionized sensitizer molecules could be extracted independently. It is concluded that the PR growth time without preillumination is mostly determined by the competition between deep trap filling and recombination with ionized sensitizer molecules. Further, the pronounced increase in PR speed upon homogeneous preillumination (gating) as reported recently is quantitatively explained by deep trap filling Y1 - 2004 SN - 1098-0121 ER - TY - JOUR A1 - Bagnich, Sergey A. A1 - Bassler, H. A1 - Neher, Dieter T1 - Exciton dynamics in ladder-type methyl-poly(para-phenylene) doped with phosphorescent dyes N2 - The luminescence of a ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with platinum-porphyrin dye PtOEP covering the concentration 10(-3)-5% by weight has been measured employing cw and transient techniques. Upon excitation into the range of absorption of the host, strong phosphorescence of the dopant is observed. Possible ways of populating the dopant triplet state are considered. (c) 2004 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0022-2313 ER - TY - JOUR A1 - Galbrecht, Frank A1 - Yang, X. H. A1 - Nehls, B. S. A1 - Neher, Dieter A1 - Farrell, Tony A1 - Scherf, Ullrich T1 - Semiconducting polyfluorenes with electrophosphorescent on-chain platinum-salen chromophores N2 - The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported Y1 - 2005 SN - 1359-7345 ER - TY - JOUR A1 - Stiller, Burkhard A1 - Karageorgiev, Peter A1 - Geue, Thomas A1 - Morawetz, Knut A1 - Saphiannikova, Marina A1 - Mechau, Norman A1 - Neher, Dieter T1 - Optically induced mass transport studied by scanning near-field optical- and atomic force microscopy N2 - Some functionalised thin organic films show a very unusual property, namely the light induced material transport. This effect enables to generate three-dimensional structures on surfaces of azobenzene containing films only caused by special optical excitation. The physical mechanisms underlying this phenomenon have not yet been fully understood, and in addition, the dimensions of structures created in that way are macroscopic because of the optical techniques and the wavelength of the used light. In order to gain deeper insight into the physical fundamentals of this phenomenon and to open possibilities for applications it is necessary to create and study structures not only in a macroscopic but also in nanometer range. We first report about experiments to generate optically induced nano structures even down to 100 nm size. The optical stimulation was therefore made by a Scanning Near-field Optical Microscope (SNOM). Secondly, physical conditions inside optically generated surface relief gratings were studied by measuring mechanical properties with high lateral resolution via pulse force mode and force distance curves of an AFM Y1 - 2004 SN - 0204-3467 ER - TY - JOUR A1 - Yang, X. H. A1 - Neher, Dieter T1 - Polymer electrophosphorescence devices with high power conversion efficiencies N2 - We demonstrate efficient single-layer polymer phosphorescent light-emitting devices based on a green-emitting iridium complex and a polymer host co-doped with electron-transporting and hole-transporting molecules. These devices can be operated at relatively low voltages, resulting in a power conversion efficiency of up to 24 lm/W at luminous efficiencies exceeding 30 cd/A. The overall performances of these devices suggest that efficient electrophosphorescent devices with acceptable operating voltages can be achieved in very simple device structures fabricated by spin coating. (C) 2004 American Institute of Physics Y1 - 2004 SN - 0003-6951 ER - TY - JOUR A1 - Yang, X. H. A1 - Neher, Dieter A1 - Hertel, D. A1 - Daubler, T. K. T1 - Highly efficient single-layer polymer electrophosphorescent devices N2 - A commercially available Ir complex has been employed for the preparation of highly efficient (see Figure) single-layer phosphorescent polymer light,emitting diodes by use of appropriate thermal treatment and proper adjustment of the layer composition. These devices exhibit essentially no dependence of the driving field on the concentration of the Ir complex, suggesting that the build-up of space-charge in the layer is insignificant Y1 - 2004 SN - 0935-9648 ER - TY - JOUR A1 - Srikhirin, T. A1 - Cimrova, V. A1 - Schiewe, B. A1 - Tzolov, M. A1 - Hagen, R. A1 - Kostromine, S. A1 - Bieringer, Thomas A1 - Neher, Dieter T1 - An Investigation of the photoinduced changes of absoprtion of high-performance photoaddressable Polymers Y1 - 2002 ER - TY - JOUR A1 - Sianova, D. A1 - Zen, Achmad A1 - Nothofer, Heinz-Georg A1 - Asawapirom, Udom A1 - Scherf, Ullrich A1 - Hagen, R. A1 - Bieringer, Thomas A1 - Kostromine, S. A1 - Neher, Dieter T1 - Photoaddressable alignment layers for fluorescent polymers in polarized electroluminescence devices Y1 - 2002 ER - TY - JOUR A1 - Wilson, J. N. A1 - Steffen, W. A1 - McKenzie, T. G. A1 - Lieser, G. A1 - Oda, Masao A1 - Neher, Dieter A1 - Bunz, Uwe H. F. T1 - Chiroptcial properties of poly(p-phenyleneethynylene) copolymers in thin films : large g-values Y1 - 2002 ER - TY - JOUR A1 - Zen, Achmad A1 - Neher, Dieter A1 - Bauer, C. A1 - Asawapirom, Udom A1 - Scherf, Ullrich A1 - Hagen, R. A1 - Kostromine, S. A1 - Mahrt, R. F. T1 - Polarization-sensitive photoconductivity in aligned polyfluorene layers Y1 - 2002 ER - TY - JOUR A1 - Srikhirin, Toemsak A1 - Laschitsch, Alexander A1 - Neher, Dieter A1 - Johannsmann, Diethelm T1 - Light-induced softening of azobenzene dye-doped polymer films probed with quartz crystal resonators Y1 - 2000 ER - TY - JOUR A1 - Nothofer, Heinz-Georg A1 - Meisel, A. A1 - Miteva, T. A1 - Neher, Dieter A1 - Forster, M. A1 - Oda, Masao A1 - Lieser, G. A1 - Sainova, Dessislava A1 - Yasuda, A. A1 - Lupo, D. A1 - Knoll, W. A1 - Scherf, Ullrich T1 - Liquid crystalline polyfluorenes for blue polarized electroluminescence Y1 - 2000 ER - TY - JOUR A1 - Lieser, G. A1 - Oda, Masao A1 - Miteva, T. A1 - Nothofer, Heinz-Georg A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - Ordering, graphoepitaxial orientation, and conformation of a polyfluorene derivative of the "hairy-rod" type on an oriented substrate of polyimide Y1 - 2000 ER - TY - JOUR A1 - Oda, Masao A1 - Nothofer, Heinz-Georg A1 - Lieser, G. A1 - Scherf, Ullrich A1 - Meskers, S. C. J. A1 - Neher, Dieter T1 - Circularly-polarized electroluminescence from liquid-crystalline chiral polyfluorenes Y1 - 2000 ER - TY - JOUR A1 - Urayama, Kenji A1 - Tsuji, M. A1 - Neher, Dieter T1 - Layer-thinning effects on ferroelectricity and the ferroelectric-to-paraelectric phase transition of vinylidene fluoride-trifluoroethylene copolymer layers Y1 - 2000 ER - TY - JOUR A1 - Bauer, C. A1 - Böhmer, Roland A1 - Moreno-Flores, S. A1 - Richert, R. A1 - Sillescu, H. A1 - Neher, Dieter T1 - Capacitive scanning dilatometry and frequency dependent thermal expansion of polymer films Y1 - 2000 ER - TY - JOUR A1 - Pralle, Martin U. A1 - Urayama, Kenji A1 - Tew, Gregory N. A1 - Neher, Dieter A1 - Wegner, Gerhard A1 - Stupp, Samuel I. T1 - Piezoelectricity in polar supramolecular materials Y1 - 2000 ER - TY - JOUR A1 - Oda, Masao A1 - Meskers, S. C. J. A1 - Nothofer, Heinz-Georg A1 - Scherf, Ullrich A1 - Neher, Dieter T1 - Chiroptical properties of chiral-substituted polyfluorenes Y1 - 2000 ER - TY - JOUR A1 - Pranav, Manasi A1 - Benduhn, Johannes A1 - Nyman, Mathias A1 - Hosseini, Seyed Mehrdad A1 - Kublitski, Jonas A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Leo, Karl A1 - Spoltore, Donato T1 - Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells JF - ACS applied materials & interfaces N2 - Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design. KW - nonradiative losses KW - molybdenum oxide KW - organic solar cells KW - interfacial layers KW - charge selectivity Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00049 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 10 SP - 12603 EP - 12609 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Li, Tian-yi A1 - Benduhn, Johannes A1 - Qiao, Zhi A1 - Liu, Yuan A1 - Li, Yue A1 - Shivhare, Rishi A1 - Jaiser, Frank A1 - Wang, Pei A1 - Ma, Jie A1 - Zeika, Olaf A1 - Neher, Dieter A1 - Mannsfeld, Stefan C. B. A1 - Ma, Zaifei A1 - Vandewal, Koen A1 - Leo, Karl T1 - Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells JF - The journal of physical chemistry letters N2 - An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5% is achieved with an external quantum efficiency (EQE) maximum of 68% at 700 nm. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b01222 SN - 1948-7185 VL - 10 IS - 11 SP - 2684 EP - 2691 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Yang, Xiao Hui A1 - Jaiser, Frank A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Galbrecht, Frank A1 - Scherf, Ullrich T1 - Efficient polymer electrophosphoreseent devices with interfacial layers JF - Advanced functional materials N2 - It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 %) and a maximum power-conversion efficiency of 5 Im W-1 can be realized. Y1 - 2006 U6 - https://doi.org/10.1002/adfm.200500834 SN - 1616-301X SN - 1616-3028 VL - 16 IS - 16 SP - 2156 EP - 2162 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kurpiers, Jona A1 - Ferron, Thomas A1 - Roland, Steffen A1 - Jakoby, Marius A1 - Thiede, Tobias A1 - Jaiser, Frank A1 - Albrecht, Steve A1 - Janietz, Silvia A1 - Collins, Brian A. A1 - Howard, Ian A. A1 - Neher, Dieter T1 - Probing the pathways of free charge generation in organic bulk heterojunction solar cells JF - Nature Communications N2 - The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-018-04386-3 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER -