TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators N2 - Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. Hörmander’s definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah–Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks T3 - Preprint - (2003) 11 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26587 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow N2 - Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah–Patodi–Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose’s Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah–Patodi–Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks T3 - Preprint - (2003) 12 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26595 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 5: Manifolds with isolated singularities N2 - Contents: Chapter 5: Manifolds with Isolated Singularities 5.1. Differential Operators and the Geometry of Singularities 5.1.1. How do isolated singularities arise? Examples 5.1.2. Definition and methods for the description of manifolds with isolated singularities 5.1.3. Bundles. The cotangent bundle 5.2. Asymptotics of Solutions, Function Spaces,Conormal Symbols 5.2.1. Conical singularities 5.2.2. Cuspidal singularities 5.3. A Universal Representation of Degenerate Operators and the Finiteness Theorem 5.3.1. The cylindrical representation 5.3.2. Continuity and compactness 5.3.3. Ellipticity and the finiteness theorem 5.4. Calculus of ΨDO 5.4.1. General ΨDO 5.4.2. The subalgebra of stabilizing ΨDO 5.4.3. Ellipticity and the finiteness theorem T3 - Preprint - (2003) 23 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26659 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Elliptic theory on manifolds with nonisolated singularities : V. Index formulas for elliptic problems on manifolds with edges N2 - For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge. T3 - Preprint - (2003) 02 KW - manifold with edge KW - elliptic problem KW - index formula KW - symmetry conditions Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26500 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 1: Localization (surgery) in elliptic theory N2 - Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß–Wojciechowski theorem 1.2.2. The Gromov–Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich–Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski’s theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah–Bott–Lefschetz theorem T3 - Preprint - (2003) 06 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26546 ER -