TY - JOUR A1 - Naujokat, Stefan A1 - Neubauer, Johannes A1 - Lamprecht, Anna-Lena A1 - Steffen, Bernhard A1 - Joerges, Sven A1 - Margaria, Tiziana T1 - Simplicity-first model-based plug-in development JF - Software : practice & experience N2 - In this article, we present our experience with over a decade of strict simplicity orientation in the development and evolution of plug-ins. The point of our approach is to enable our graphical modeling framework jABC to capture plug-in development in a domain-specific setting. The typically quite tedious and technical plug-in development is shifted this way from a programming task to the modeling level, where it can be mastered also by application experts without programming expertise. We show how the classical plug-in development profits from a systematic domain-specific API design and how the level of abstraction achieved this way can be further enhanced by defining adequate building blocks for high-level plug-in modeling. As the resulting plug-in models can be compiled and deployed automatically, our approach decomposes plug-in development into three phases where only the realization phase requires plug-in-specific effort. By using our modeling framework jABC, this effort boils down to graphical, tool-supported process modeling. Furthermore, we support the automatic completion of process sketches for executability. All this will be illustrated along the most recent plug-in-based evolution of the jABC framework, which witnessed quite some bootstrapping effects. KW - plug-ins KW - simplicity KW - domain-specific APIs KW - process modeling KW - bootstrapping KW - evolution KW - code generation KW - loose programming KW - dynamic service binding Y1 - 2014 U6 - https://doi.org/10.1002/spe.2243 SN - 0038-0644 SN - 1097-024X VL - 44 IS - 3 SP - 277 EP - 297 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Lamprecht, Anna-Lena A1 - Naujokat, Stefan A1 - Schaefer, Ina T1 - Variability Management beyond Feature Models JF - COMPUTER N2 - When new customer and regulatory requirements arise, the ability to quickly adapt business information system processes is crucial to stay ahead of competitors. A proposed synthesis-based framework enables the development of business processes that automatically yield fully executable variants. Y1 - 2013 SN - 0018-9162 SN - 1558-0814 VL - 46 IS - 11 SP - 48 EP - 54 PB - IEEE COMPUTER SOC CY - LOS ALAMITOS ER - TY - GEN A1 - Lamprecht, Anna-Lena A1 - Naujokat, Stefan A1 - Margaria, Tiziana A1 - Steffen, Bernhard T1 - Semantics-based composition of EMBOSS services T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background More than in other domains the heterogeneous services world in bioinformatics demands for a methodology to classify and relate resources in a both human and machine accessible manner. The Semantic Web, which is meant to address exactly this challenge, is currently one of the most ambitious projects in computer science. Collective efforts within the community have already led to a basis of standards for semantic service descriptions and meta-information. In combination with process synthesis and planning methods, such knowledge about types and services can facilitate the automatic composition of workflows for particular research questions. Results In this study we apply the synthesis methodology that is available in the Bio-jETI workflow management framework for the semantics-based composition of EMBOSS services. EMBOSS (European Molecular Biology Open Software Suite) is a collection of 350 tools (March 2010) for various sequence analysis tasks, and thus a rich source of services and types that imply comprehensive domain models for planning and synthesis approaches. We use and compare two different setups of our EMBOSS synthesis domain: 1) a manually defined domain setup where an intuitive, high-level, semantically meaningful nomenclature is applied to describe the input/output behavior of the single EMBOSS tools and their classifications, and 2) a domain setup where this information has been automatically derived from the EMBOSS Ajax Command Definition (ACD) files and the EMBRACE Data and Methods ontology (EDAM). Our experiments demonstrate that these domain models in combination with our synthesis methodology greatly simplify working with the large, heterogeneous, and hence manually intractable EMBOSS collection. However, they also show that with the information that can be derived from the (current) ACD files and EDAM ontology alone, some essential connections between services can not be recognized. Conclusions Our results show that adequate domain modeling requires to incorporate as much domain knowledge as possible, far beyond the mere technical aspects of the different types and services. Finding or defining semantically appropriate service and type descriptions is a difficult task, but the bioinformatics community appears to be on the right track towards a Life Science Semantic Web, which will eventually allow automatic service composition methods to unfold their full potential. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 956 KW - service description KW - synthesis algorithm KW - input type KW - synthesis methodology KW - electronic tool integration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431830 SN - 1866-8372 IS - 956 ER -