TY - GEN A1 - Amen, Rahma A1 - Nagel, Rebecca A1 - Hedt, Maximilian A1 - Kirschbaum, Frank A1 - Tiedemann, Ralph T1 - Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1416 KW - ecological speciation KW - feeding behaviour KW - electric fish KW - trophic apparatus KW - evolutionary ecology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-518714 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Amen, Rahma A1 - Nagel, Rebecca A1 - Hedt, Maximilian A1 - Kirschbaum, Frank A1 - Tiedemann, Ralph T1 - Morphological differentiation in African weakly electric fish (genus Campylomormyrus) relates to substrate preferences JF - Evolutionary Ecology N2 - Under an ecological speciation scenario, the radiation of African weakly electric fish (genus Campylomormyrus) is caused by an adaptation to different food sources, associated with diversification of the electric organ discharge (EOD). This study experimentally investigates a phenotype-environment correlation to further support this scenario. Our behavioural experiments showed that three sympatric Campylomormyrus species with significantly divergent snout morphology differentially react to variation in substrate structure. While the short snout species (C. tamandua) exhibits preference to sandy substrate, the long snout species (C. rhynchophorus) significantly prefers a stone substrate for feeding. A third species with intermediate snout size (C. compressirostris) does not exhibit any substrate preference. This preference is matched with the observation that long-snouted specimens probe deeper into the stone substrate, presumably enabling them to reach prey more distant to the substrate surface. These findings suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to specific microhabitats, i.e., substrate structures where these fish forage. Whether the parallel divergence in EOD is functionally related to this adaptation or solely serves as a prezygotic isolation mechanism remains to be elucidated. KW - ecological speciation KW - feeding behaviour KW - electric fish KW - trophic apparatus KW - evolutionary ecology Y1 - 2020 U6 - https://doi.org/10.1007/s10682-020-10043-3 SN - 0269-7653 SN - 1573-8477 VL - 34 IS - 3 SP - 427 EP - 437 PB - Springer Science CY - Dordrecht ER - TY - JOUR A1 - De Cahsan, Binia A1 - Nagel, Rebecca A1 - Schedina, Ina-Maria A1 - King, James J. A1 - Bianco, Pier G. A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data JF - Journal of fish biology N2 - The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity. KW - European lamprey KW - Lampetra KW - paired species KW - phylogeography KW - population KW - structure Y1 - 2020 U6 - https://doi.org/10.1111/jfb.14279 SN - 0022-1112 SN - 1095-8649 VL - 96 IS - 4 SP - 905 EP - 912 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - THES A1 - Nagel, Rebecca T1 - Genetic and behavioral investigations into African weakly electric fish (Osteoglossomorpha: Mormyridae) speciation Y1 - 2017 ER - TY - GEN A1 - Nagel, Rebecca A1 - Kirschbaum, Frank A1 - Engelmann, Jacob A1 - Hofmann, Volker A1 - Pawelzik, Felix A1 - Tiedemann, Ralph T1 - Male-mediated species recognition among African weakly electric fishes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus Africanweakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 645 KW - Campylomormyrus KW - communication KW - electric fishes KW - pre-zygotic isolation KW - species recognition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425016 SN - 1866-8372 IS - 645 ER - TY - JOUR A1 - Nagel, Rebecca A1 - Kirschbaum, Frank A1 - Engelmann, Jacob A1 - Hofmann, Volker A1 - Pawelzik, Felix A1 - Tiedemann, Ralph T1 - Male-mediated species recognition among African weakly electric fishes JF - Royal Society Open Science N2 - Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus Africanweakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species. KW - Campylomormyrus KW - communication KW - electric fishes KW - pre-zygotic isolation KW - species recognition Y1 - 2018 U6 - https://doi.org/10.1098/rsos.170443 SN - 2054-5703 VL - 5 IS - 2 PB - Royal Society CY - London ER - TY - JOUR A1 - Nagel, Rebecca A1 - Kirschbaum, Frank A1 - Hofmann, Volker A1 - Engelmann, Jacob A1 - Tiedemann, Ralph T1 - Electric pulse characteristics can enable species recognition in African weakly electric fish species JF - Scientific Reports N2 - Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon. KW - Dwelling Atlantic Mollies KW - Organ Discharge Patterns KW - Mormyrid Fish KW - Pollimyrus-Isidori KW - Acoustic-Signals KW - Sexual Selection KW - Phylogenetic-Relationships KW - Hypopomus-Occidentalis KW - Convergent Evolution KW - Poecili-Mexicana Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-29132-z SN - 2045-2322 VL - 8 SP - 1 EP - 12 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Nagel, Rebecca A1 - Kirschbaum, Frank A1 - Hofmann, Volker A1 - Engelmann, Jacob A1 - Tiedemann, Ralph T1 - Electric pulse characteristics can enable species recognition in African weakly electric fish species T2 - Scientific Reports N2 - Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 470 KW - Dwelling Atlantic Mollies KW - Organ Discharge Patterns KW - Mormyrid Fish KW - Pollimyrus-Isidori KW - Acoustic-Signals KW - Sexual Selection KW - Phylogenetic-Relationships KW - Hypopomus-Occidentalis KW - Convergent Evolution KW - Poecili-Mexicana Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417577 ER - TY - JOUR A1 - Nagel, Rebecca A1 - Kirschbaum, Frank A1 - Tiedemann, Ralph T1 - Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes JF - Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology N2 - In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish. KW - Weakly electric fish KW - Ion channels KW - Electric organ KW - Gene expression KW - Campylomormyrus Y1 - 2017 U6 - https://doi.org/10.1007/s00359-017-1151-2 SN - 0340-7594 SN - 1432-1351 VL - 203 SP - 183 EP - 195 PB - Springer CY - New York ER -