TY - JOUR A1 - Nöske, Robert A1 - Liebers, Klaus T1 - Projekte und Kurse zu optischen Geräten : Faszination Glas (1) Y1 - 1995 ER - TY - JOUR A1 - Nöske, Robert A1 - Liebers, Klaus T1 - Projekte und Kurse zu optischen Geräten : Faszination Glas (2) Y1 - 1995 ER - TY - JOUR A1 - Sonnenburg, Kirstin A1 - Adelhelm, Philipp A1 - Antonietti, Markus A1 - Smarsly, Bernd A1 - Nöske, Robert A1 - Strauch, Peter T1 - Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques N2 - Porous silicon carbide monoliths were obtained using the infiltration of preformed SiO2 frameworks with appropriate carbon precursors such as mesophase pitch. The initial SiO2 monoliths possessed a hierarchical pore system, composed of an interpenetrating bicontinuous macropore structure and 13 nm mesopores confined in the macropore walls. After carbonization, further heat treatment at ca. 1400 degrees C resulted in the formation of a SiC-SiO2 composite, which was converted into a porous SiC monolith by post-treatment with ammonium fluoride solution. The resulting porous SiC featured high crystallinity, high chemical purity and showed a surface area of 280 m(2) g(-1) and a pore volume of 0.8 ml g(-1) Y1 - 2006 UR - http://pubs.rsc.org/en/Content/ArticleLanding/2006/CP/b604819f U6 - https://doi.org/10.1039/B604819F ER - TY - GEN A1 - Unuabonah, Emmanuel I. A1 - Nöske, Robert A1 - Weber, Jens A1 - Günter, Christina A1 - Taubert, Andreas T1 - New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between ≈150 and 300 m2/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 720 KW - 4-nitrophenol KW - Carica papaya seeds KW - clay KW - E. coli KW - micro/mesoporous KW - nanocomposite KW - water remediation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426214 IS - 720 SP - 119 EP - 131 ER - TY - JOUR A1 - Behrens, Karsten A1 - Mondal, Suvendu Selchar A1 - Nöske, Robert A1 - Baburin, Igor A. A1 - Leoni, Stefano A1 - Günter, Christina A1 - Weber, Jens A1 - Holdt, Hans-Jürgen T1 - Microwave-Assisted Synthesis of Defects Metal-Imidazolate-Amide-Imidate Frameworks and Improved CO2 Capture JF - Inorganic chemistry N2 - In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 angstrom A). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N-2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects. Y1 - 2015 U6 - https://doi.org/10.1021/acs.inorgchem.5b01952 SN - 0020-1669 SN - 1520-510X VL - 54 IS - 20 SP - 10073 EP - 10080 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Unuabonah, Emmanuel A1 - Nöske, Robert A1 - Weber, Jens A1 - Günter, Christina A1 - Taubert, Andreas T1 - New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water JF - Beilstein journal of nanotechnology N2 - A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between approximate to 150 and 300 m(2)/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 degrees C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible. KW - 4-nitrophenol KW - Carica papaya seeds KW - clay KW - E. coli KW - micro/mesoporous KW - nanocomposite KW - water remediation Y1 - 2019 U6 - https://doi.org/10.3762/bjnano.10.11 SN - 2190-4286 VL - 10 SP - 119 EP - 131 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER -