TY - GEN A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - A supramolecular Co(II)₁₄-metal–organic cube in a hydrogen-bonded network and a Co(II)–organic framework with a flexible methoxy substituent N2 - The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)2·6H2O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)14-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 169 KW - zinc Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74098 IS - 169 SP - 5441 EP - 5443 ER - TY - GEN A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Baburin, Igor A. A1 - Jäger, Christian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Seifert, Gotthard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity N2 - A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 233 KW - adsorption KW - capacity KW - carbon-dioxide capture KW - coordination polymer KW - flexibility KW - hydrogen storage KW - ligand KW - metal-organic frameworks KW - mixed-matrix membranes KW - separation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94341 SP - 7599 EP - 7601 ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Marquardt, Dorothea A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles JF - Dalton transactions : an international journal of inorganic chemistry N2 - Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of −22 to −71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures. Y1 - 2016 U6 - https://doi.org/10.1039/C6DT00225K SN - 1477-9226 IS - 45 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - A supramolecular Co(II)₁₄-metal–organic cube in a hydrogen-bonded network and a Co(II)–organic framework with a flexible methoxy substituent JF - Chemical communications : ChemComm N2 - The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)2·6H2O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)14-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms. KW - zinc Y1 - 2014 U6 - https://doi.org/10.1039/c3cc49698h SN - 2046-2069 VL - 2014 IS - 41 SP - 5441 EP - 5443 PB - Royal Society of Chemistry ER - TY - JOUR A1 - Debatin, Franziska A1 - Möllmer, Jens A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Möller, Andreas A1 - Staudt, Reiner A1 - Thomas, Arne A1 - Holdt, Hans-Jürgen T1 - Mixed gas adsorption of carbon dioxide and methane on a series of isoreticular microporous metal-organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates JF - Journal of materials chemistry N2 - In this work the adsorption of CO2 and CH4 on a series of isoreticular microporous metal-organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates, IFP-1-IFP-6 (IFP Imidazolate Framework Potsdam), is studied firstly by pure gas adsorption at 273 K. All experimental isotherms can be nicely described by using the Toth isotherm model and show the preferred adsorption of CO2 over CH4. At low pressures the Toth isotherm equation exhibits a Henry region, wherefore Henry's law constants for CO2 and CH4 uptake could be determined and ideal selectivity (alpha CO2/CH4) has been calculated. Secondly, selectivities were calculated from mixture data by using nearly equimolar binary mixtures of both gases by a volumetric-chromatographic method to examine the IFPs. Results showed the reliability of the selectivity calculation. Values of (alpha CO2/CH4) around 7.5 for IFP-5 indicate that this material shows much better selectivities than IFP-1, IFP-2, IFP-3, IFP-4 and IFP-6 with slightly lower selectivity (alpha CO2/CH4) = 4-6. The preferred adsorption of CO2 over CH4 especially of IFP-5 and IFP-4 makes these materials suitable for gas separation application. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm15811f SN - 0959-9428 VL - 22 IS - 20 SP - 10221 EP - 10227 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Baburin, Igor A. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Seifert, Gotthard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent JF - CrystEngComm N2 - A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H-2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect. Y1 - 2013 U6 - https://doi.org/10.1039/c3ce41632a SN - 1466-8033 VL - 15 IS - 45 SP - 9394 EP - 9399 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Baburin, Igor A. A1 - Jäger, Christian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Seifert, Gotthard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity JF - Chemical communications N2 - A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N-2 and CH4 gases. Y1 - 2013 U6 - https://doi.org/10.1039/c3cc42156b SN - 1359-7345 VL - 49 IS - 69 SP - 7599 EP - 7601 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Baburin, Igor A. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Syntheses of two imidazolate-4-amide-5-imidate linker based hexagonal metal-organic frameworks with flexible ethoxy substituent N2 - A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas- sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect. Y1 - 2008 UR - http://pubs.rsc.org/en/Content/ArticleLanding/2013/CE/c3ce41632a U6 - https://doi.org/10.1039/C3CE41632A ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Demeshok, Serhiy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption ans magnetic proberties N2 - A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling. Y1 - 2008 UR - http://pubs.rsc.org/en/content/articlelanding/2013/ce/c3ce42040j ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Baburin, Igor A. A1 - Jäger, Christian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Seiert, Gotthard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxy substituents and CO2 selectivity N2 - A new imidazolate-4-amide-5-imidate based MOF, IFP-7, is generated, having flexible methoxy groups, which act as molecular gates for guest molecules. This allows highly selective CO2 sorption over N2 and CH4 gases. Y1 - 2008 UR - http://pubs.rsc.org/en/content/articlepdf/2013/cc/c3cc42156b U6 - https://doi.org/10.1039/C3CC42156B ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Attallah, Ahmed G. A1 - Matthes, Philipp R. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Müller-Buschbaum, Klaus A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides JF - Chemistry - a European journal N2 - An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions. KW - adsorption KW - cadmium KW - ionic liquids KW - luminescence KW - metal-organic frameworks Y1 - 2016 U6 - https://doi.org/10.1002/chem.201504757 SN - 0947-6539 SN - 1521-3765 VL - 22 SP - 6905 EP - 6913 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Thomas, Arne A1 - Holdt, Hans-Jürgen T1 - In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage JF - Microporous and mesoporous materials : zeolites, clays, carbons and related materials N2 - In this review article, we highlight the synthesis, structures and gas-sorption properties of a series of nine isostructural IFPs (IFP = Imidazolate Framework Potsdam) and two H-bonded networks. IFPs were synthesized by in situ partial hydrolysis of a 4,5-dicyanoimidazole under solvothermal conditions and hence an imidazolate-4-amide-5-imidate linker (C5H3N4O2) was generated, forming the metal -amide-imidate-imidazolateframeworks [M(C5H3N4O2)-R]. Varying R in the 2-substitued linker (R = Me, Cl, Br, Et, OMe and OEt) and metal centre (M2+ = zinc and cobalt) allowed the variation in channel diameter (4.2-03 angstrom) and a fine-tuning of the polarity and functionality of the channel walls of IFPs. Furthermore, we show that using ethyl or alkoxy substituted IFPs the flexible groups act as molecular gates for guest molecules. This allows highly selective CO2 sorption over Ny and CH4 gases. Moreover, during the synthesis of methoxy substituted IFPs (IFP-7 and -8), an imidazolate-4,5-diamide-2-olate linker (C5H4N4O3) formed in situ leads to the formation of a molecular building block (MBB) with a M-6 octahedron inscribed in a M-8 cube (M Zn2+ and Co2+). The MBBs connect by amide amide hydrogen bonds to a 3D robust supramolecular networks [Zn-14(C5H4N4O3)(12)(O) (OH)(2) (DMF)(4) denoted as 1 and 2, respectively, DMF = N,N'-dimethylformamide], which can be activated for N-2, CO2, CH4, and H-2 gas-sorption. (C) 2015 Elsevier Inc. All rights reserved. KW - Flexible linker KW - Gas sorption KW - Gate-effects KW - Hydrogen-bonding KW - Solvothermal synthesis Y1 - 2015 U6 - https://doi.org/10.1016/j.micromeso.2015.01.049 SN - 1387-1811 SN - 1873-3093 VL - 216 SP - 2 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Mueller, Holger A1 - Junginger, Matthias A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strehmel, Veronika A1 - Holdt, Hans-Jürgen T1 - Imidazolium 2-substituted 4,5-dicyanoimidazolate ionic liquids: synthesis, crystal structures and structure-thermal property relationships JF - Chemistry - a European journal N2 - Thirty six novel ionic liquids (ILs) with 1-butyl-3-methylimidazolium and 3-methyl-1-octylimidazolium cations paired with 2-substitited 4,5-dicyanoimidazolate anions (substituent at C2=chloro, bromo, methoxy, vinyl, amino, methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and phenyl) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and single-crystal X-ray crystallography. The effects of cation and anion type and structure on the thermal properties of the resulting ionic liquids, including several room temperature ionic liquids (RTILs) are examined and discussed. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -68 degrees C. The effects of alkyl substituents of the imidazolate anion reflected the crystallization, melting points and thermal decomposition of the ILs. The Coulombic packing force, van der Waals forces and size of the anions can be considered for altering the thermal transitions. Three crystal structures of the ILs were determined and the effects of changes to the cations and anions on the packing of the structure were investigated. KW - crystal structures KW - imidazole KW - ion exchange KW - ionic liquids KW - pi-pi stacking Y1 - 2014 U6 - https://doi.org/10.1002/chem.201304934 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 26 SP - 8170 EP - 8181 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Kelling, Alexandra A1 - Nabein, Hans-Peter A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom. KW - Cobalt KW - Cadmium KW - Coordination polymers KW - Crystal structures KW - Imidazole Y1 - 2015 U6 - https://doi.org/10.1002/zaac.201500526 SN - 0044-2313 SN - 1521-3749 VL - 641 IS - 11 SP - 1991 EP - 1997 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Giant Zn-14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake JF - Journal of the American Chemical Society N2 - In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn-14(L2)(12)(O)-(OH)(2)(H2O)(4)] molecular building block (MBB) with a Zn-6 octahedron inscribed in a Zn-8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N-2, CO2, CH4, and H-2 gas sorption. Y1 - 2014 U6 - https://doi.org/10.1021/ja410595q SN - 0002-7863 VL - 136 IS - 1 SP - 44 EP - 47 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - A supramolecular Co(II)(14)- metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent JF - Chemical communications N2 - The reaction of 4,5-dicyano-2-methoxyimidazole (L1) with Co(NO3)(2.) 6H(2)O under solvothermal conditions in DMF, a MOF, IFP-8 and a hydrogen-bonded network consisting of tetradecanuclear Co(II)(14)-metal organic cube (1) are achieved. 1 shows the bcu net with 14 cobalt atoms. Y1 - 2014 U6 - https://doi.org/10.1039/c3cc49698h SN - 1359-7345 SN - 1364-548X VL - 50 IS - 41 SP - 5441 EP - 5443 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Demeshko, Serhiy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties JF - CrystEngComm N2 - A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N-2, CO2, CH4 and H-2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling. Y1 - 2014 U6 - https://doi.org/10.1039/c3ce42040j SN - 1466-8033 VL - 16 IS - 1 SP - 39 EP - 42 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Marquardt, Dorothea A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of −22 to −71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures. Y1 - 2016 U6 - https://doi.org/10.1039/c6dt00225k SN - 1477-9226 SN - 1477-9234 VL - 45 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Hovestadt, Maximilian A1 - Dey, Subarna A1 - Paula, Carolin A1 - Glomb, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Hartmann, Martin A1 - Holdt, Hans-Jürgen T1 - Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation JF - CrystEngComm N2 - The separation of ethane/ethene mixtures (as well as other paraffin/olefin mixtures) is one of the most important but challenging processes in the petrochemical industry. In this work, we report the synthesis of ZIF-318, isostructural to ZIF-8 but built from the mixed linkers of 2-methylimidazole (L1) and 2-trifluoromethylimidazole (L2) (ZIF-318 = [(Zn(L1)(L2)](n)). The synthesis has been optimized to proceed without ZnO-formation. Using only the L2 linker under solvothermal conditions afforded ZnO-embedded in the H-bonded and non-porous coordination polymer ZnO@[Zn-2(L2)(2)(HCOO)(OH)](n). The slight differences in the size of the substituents (-CH3 vs. -CF3) possibly in combination with different electronic inductive effects led to small but significant changes to the pore size and properties respectively, though the effective pore opening (aperture) size of ZIF-318 remained the same in comparison with ZIF-8. ZIF-318 is chemically (boiling water, methanol, benzene, and wide pH range at room temperature for 1 day), thermally (up to 310 degrees C) stable, and more hydrophobic than ZIF-8 which is proven by contact angle measurement. ZIF-318 can be activated for N-2, CO2, CH4, H-2, ethane, ethane, propane, and propene gases sorptions. Consequently, in breakthrough experiments, the ethane/ethene mixtures can be separated. Y1 - 2017 U6 - https://doi.org/10.1039/c7ce01438d SN - 1466-8033 VL - 19 SP - 5882 EP - 5891 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hovestadt, Maximilian A1 - Bendt, Stephan A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Reif, Florian A1 - Dopken, Merle A1 - Holdt, Hans-Jürgen A1 - Keil, Frerich J. A1 - Hartmann, Martin T1 - Experimental and Theoretical Analysis of the Influence of Different Linker Molecules in Imidazolate Frameworks Potsdam (IFP-n) on the Separation of Olefin-Paraffin Mixtures JF - Langmuir N2 - Four metal organic frameworks with similar topology but different chemical environment inside the pore structure, namely, IFP-1, IFP-3, IFP-5, and IFP-7, have been investigated with respect to the separation potential for olefin paraffin mixtures as well as the influence of the different linkers on adsorption properties using experiments and Monte Carlo simulations. All IFP structures show a higher adsorption of ethane compared to ethene with the exception of IFP-7 which shows no selectivity in breakthrough experiments. For propane/propane separation, all adsorbents show a higher adsorption for the olefin. The experimental results agree quite well with the simulated values except for the IFP-7, which is presumably due to the flexibility of the structure. Moreover, the experimental and simulated isotherms were confirmed with breakthrough experiments that render IFP-1, IFP-3, and IFP-5 as suitable for the purification of ethene from ethane. Y1 - 2017 U6 - https://doi.org/10.1021/acs.langmuir.7b02016 SN - 0743-7463 VL - 33 SP - 11170 EP - 11179 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Mondal, Suvendu Sekhar A1 - Holdt, Hans-Jürgen T1 - Breaking Down Chemical Weapons by Metal-Organic Frameworks T2 - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the ZrIV-containing metal—organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. KW - heterogeneous catalysis KW - hydrolysis KW - metalorganic frameworks KW - nerve agents KW - silk fibroin Y1 - 2016 U6 - https://doi.org/10.1002/anie.201508407 SN - 1433-7851 SN - 1521-3773 VL - 55 SP - 42 EP - 44 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Alrefai, Anas A1 - Mondal, Suvendu Sekhar A1 - Wruck, Alexander A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Brandt, Philipp A1 - Janiak, Christoph A1 - Schoenfeld, Sophie A1 - Weber, Birgit A1 - Rybakowski, Lawrence A1 - Herrman, Carmen A1 - Brennenstuhl, Katlen A1 - Eidner, Sascha A1 - Kumke, Michael Uwe A1 - Behrens, Karsten A1 - Günter, Christina A1 - Müller, Holger A1 - Holdt, Hans-Jürgen T1 - Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties JF - Journal of Inclusion Phenomena and Macrocyclic Chemistry N2 - By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework. KW - Gas-sorption KW - Ligand design KW - Magnetic properties KW - Supramolecular chemistry KW - Solvothermal synthesis Y1 - 2019 U6 - https://doi.org/10.1007/s10847-019-00926-6 SN - 1388-3127 SN - 1573-1111 VL - 94 IS - 3-4 SP - 155 EP - 165 PB - Springer CY - Dordrecht ER -