TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Matthes, Philipp R. A1 - Schönfeld, Fabian A1 - Nitsch, Jörn A1 - Steffen, Andreas A1 - Primus, Philipp-Alexander A1 - Kumke, Michael Uwe A1 - Müller-Buschbaum, Klaus A1 - Holdt, Hans-Jürgen T1 - White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+ JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Co-doping of the MOF 3∞[Zn(2-methylimidazolate-4-amide-5-imidate)] (IFP-1 = Imidazolate Framework Potsdam-1) with luminescent Eu3+ and Tb3+ ions presents an approach to utilize the porosity of the MOF for the intercalation of luminescence centers and for tuning of the chromaticity to the emission of white light of the quality of a three color emitter. Organic based fluorescence processes of the MOF backbone as well as metal based luminescence of the dopants are combined to one homogenous single source emitter while retaining the MOF's porosity. The lanthanide ions Eu3+ and Tb3+ were doped in situ into IFP-1 upon formation of the MOF by intercalation into the micropores of the growing framework without a structure directing effect. Furthermore, the color point is temperature sensitive, so that a cold white light with a higher blue content is observed at 77 K and a warmer white light at room temperature (RT) due to the reduction of the organic emission at higher temperatures. The study further illustrates the dependence of the amount of luminescent ions on porosity and sorption properties of the MOF and proves the intercalation of luminescence centers into the pore system by low-temperature site selective photoluminescence spectroscopy, SEM and EDX. It also covers an investigation of the border of homogenous uptake within the MOF pores and the formation of secondary phases of lanthanide formates on the surface of the MOF. Crossing the border from a homogenous co-doping to a two-phase composite system can be beneficially used to adjust the character and warmth of the white light. This study also describes two-color emitters of the formula Ln@IFP-1a–d (Ln: Eu, Tb) by doping with just one lanthanide Eu3+ or Tb3+. Y1 - 2015 U6 - https://doi.org/10.1039/C4TC02919D SN - 2050-7534 SN - 2050-7526 VL - 18 IS - 3 SP - 4623 EP - 4631 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Matthes, Philipp R. A1 - Schönfeld, Fabian A1 - Nitsch, Jörn A1 - Steffen, Andreas A1 - Primus, Philipp-Alexander A1 - Kumke, Michael Uwe A1 - Müller-Buschbaum, Klaus A1 - Holdt, Hans-Jürgen T1 - White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+ JF - Journal of materials chemistry : C, Materials for optical and electronic devices Y1 - 2015 U6 - https://doi.org/10.1039/c4tc02919d SN - 2050-7526 SN - 2050-7534 VL - 3 IS - 18 SP - 4623 EP - 4631 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Mondal, Suvendu Sekhar A1 - Marquardt, Dorothea A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles N2 - Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N′-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of −22 to −71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 220 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89696 SP - 5476 EP - 5483 ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Thomas, Arne A1 - Holdt, Hans-Jürgen T1 - In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage JF - Microporous and mesoporous materials : zeolites, clays, carbons and related materials N2 - In this review article, we highlight the synthesis, structures and gas-sorption properties of a series of nine isostructural IFPs (IFP = Imidazolate Framework Potsdam) and two H-bonded networks. IFPs were synthesized by in situ partial hydrolysis of a 4,5-dicyanoimidazole under solvothermal conditions and hence an imidazolate-4-amide-5-imidate linker (C5H3N4O2) was generated, forming the metal -amide-imidate-imidazolateframeworks [M(C5H3N4O2)-R]. Varying R in the 2-substitued linker (R = Me, Cl, Br, Et, OMe and OEt) and metal centre (M2+ = zinc and cobalt) allowed the variation in channel diameter (4.2-03 angstrom) and a fine-tuning of the polarity and functionality of the channel walls of IFPs. Furthermore, we show that using ethyl or alkoxy substituted IFPs the flexible groups act as molecular gates for guest molecules. This allows highly selective CO2 sorption over Ny and CH4 gases. Moreover, during the synthesis of methoxy substituted IFPs (IFP-7 and -8), an imidazolate-4,5-diamide-2-olate linker (C5H4N4O3) formed in situ leads to the formation of a molecular building block (MBB) with a M-6 octahedron inscribed in a M-8 cube (M Zn2+ and Co2+). The MBBs connect by amide amide hydrogen bonds to a 3D robust supramolecular networks [Zn-14(C5H4N4O3)(12)(O) (OH)(2) (DMF)(4) denoted as 1 and 2, respectively, DMF = N,N'-dimethylformamide], which can be activated for N-2, CO2, CH4, and H-2 gas-sorption. (C) 2015 Elsevier Inc. All rights reserved. KW - Flexible linker KW - Gas sorption KW - Gate-effects KW - Hydrogen-bonding KW - Solvothermal synthesis Y1 - 2015 U6 - https://doi.org/10.1016/j.micromeso.2015.01.049 SN - 1387-1811 SN - 1873-3093 VL - 216 SP - 2 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Kelling, Alexandra A1 - Nabein, Hans-Peter A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom. KW - Cobalt KW - Cadmium KW - Coordination polymers KW - Crystal structures KW - Imidazole Y1 - 2015 U6 - https://doi.org/10.1002/zaac.201500526 SN - 0044-2313 SN - 1521-3749 VL - 641 IS - 11 SP - 1991 EP - 1997 PB - Wiley-VCH CY - Weinheim ER -