TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Demeshok, Serhiy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption ans magnetic proberties N2 - A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling. Y1 - 2008 UR - http://pubs.rsc.org/en/content/articlelanding/2013/ce/c3ce42040j ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Demeshko, Serhiy A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor: gas-sorption and magnetic properties JF - CrystEngComm N2 - A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N-2, CO2, CH4 and H-2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling. Y1 - 2014 U6 - https://doi.org/10.1039/c3ce42040j SN - 1466-8033 VL - 16 IS - 1 SP - 39 EP - 42 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Baburin, Igor A. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Seifert, Gotthard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal–organic frameworks with flexible ethoxy substituent N2 - A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 234 KW - adsorption KW - behavior KW - carbon-dioxide KW - crystals KW - gases KW - ligand KW - pressure KW - selectivity KW - temperature KW - zinc Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94360 SP - 9394 EP - 9399 ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Baburin, Igor A. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Seifert, Gotthard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent JF - CrystEngComm N2 - A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas-sorption behavior of both materials for H-2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect. Y1 - 2013 U6 - https://doi.org/10.1039/c3ce41632a SN - 1466-8033 VL - 15 IS - 45 SP - 9394 EP - 9399 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Baburin, Igor A. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Syntheses of two imidazolate-4-amide-5-imidate linker based hexagonal metal-organic frameworks with flexible ethoxy substituent N2 - A rare example of in situ linker generation with the formation of soft porous Zn- and Co-MOFs (IFP-9 and -10, respectively) is reported. The flexible ethoxy groups of IFP-9 and -10 protrude into the 1D hexagonal channels. The gas- sorption behavior of both materials for H2, CO2 and CH4 showed wide hysteretic isotherms, typical for MOFs having a flexible substituent which can give rise to a gate effect. Y1 - 2008 UR - http://pubs.rsc.org/en/Content/ArticleLanding/2013/CE/c3ce41632a U6 - https://doi.org/10.1039/C3CE41632A ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Attallah, Ahmed G. A1 - Matthes, Philipp R. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Müller-Buschbaum, Klaus A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides JF - Chemistry - a European journal N2 - An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions. KW - adsorption KW - cadmium KW - ionic liquids KW - luminescence KW - metal-organic frameworks Y1 - 2016 U6 - https://doi.org/10.1002/chem.201504757 SN - 0947-6539 SN - 1521-3765 VL - 22 SP - 6905 EP - 6913 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Debatin, Franziska A1 - Möllmer, Jens A1 - Mondal, Suvendu Sekhar A1 - Behrens, Karsten A1 - Möller, Andreas A1 - Staudt, Reiner A1 - Thomas, Arne A1 - Holdt, Hans-Jürgen T1 - Mixed gas adsorption of carbon dioxide and methane on a series of isoreticular microporous metal-organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates JF - Journal of materials chemistry N2 - In this work the adsorption of CO2 and CH4 on a series of isoreticular microporous metal-organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates, IFP-1-IFP-6 (IFP Imidazolate Framework Potsdam), is studied firstly by pure gas adsorption at 273 K. All experimental isotherms can be nicely described by using the Toth isotherm model and show the preferred adsorption of CO2 over CH4. At low pressures the Toth isotherm equation exhibits a Henry region, wherefore Henry's law constants for CO2 and CH4 uptake could be determined and ideal selectivity (alpha CO2/CH4) has been calculated. Secondly, selectivities were calculated from mixture data by using nearly equimolar binary mixtures of both gases by a volumetric-chromatographic method to examine the IFPs. Results showed the reliability of the selectivity calculation. Values of (alpha CO2/CH4) around 7.5 for IFP-5 indicate that this material shows much better selectivities than IFP-1, IFP-2, IFP-3, IFP-4 and IFP-6 with slightly lower selectivity (alpha CO2/CH4) = 4-6. The preferred adsorption of CO2 over CH4 especially of IFP-5 and IFP-4 makes these materials suitable for gas separation application. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm15811f SN - 0959-9428 VL - 22 IS - 20 SP - 10221 EP - 10227 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Dey, Subarna A1 - Attallah, Ahmed G. A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Insights into the pores of microwave-assisted metal-imidazolate frameworks showing enhanced gas sorption JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate- 4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW-and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H-2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption. Y1 - 2017 U6 - https://doi.org/10.1039/c7dt00350a SN - 1477-9226 SN - 1477-9234 VL - 46 SP - 4824 EP - 4833 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Thomas, Arne A1 - Holdt, Hans-Jürgen T1 - In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage JF - Microporous and mesoporous materials : zeolites, clays, carbons and related materials N2 - In this review article, we highlight the synthesis, structures and gas-sorption properties of a series of nine isostructural IFPs (IFP = Imidazolate Framework Potsdam) and two H-bonded networks. IFPs were synthesized by in situ partial hydrolysis of a 4,5-dicyanoimidazole under solvothermal conditions and hence an imidazolate-4-amide-5-imidate linker (C5H3N4O2) was generated, forming the metal -amide-imidate-imidazolateframeworks [M(C5H3N4O2)-R]. Varying R in the 2-substitued linker (R = Me, Cl, Br, Et, OMe and OEt) and metal centre (M2+ = zinc and cobalt) allowed the variation in channel diameter (4.2-03 angstrom) and a fine-tuning of the polarity and functionality of the channel walls of IFPs. Furthermore, we show that using ethyl or alkoxy substituted IFPs the flexible groups act as molecular gates for guest molecules. This allows highly selective CO2 sorption over Ny and CH4 gases. Moreover, during the synthesis of methoxy substituted IFPs (IFP-7 and -8), an imidazolate-4,5-diamide-2-olate linker (C5H4N4O3) formed in situ leads to the formation of a molecular building block (MBB) with a M-6 octahedron inscribed in a M-8 cube (M Zn2+ and Co2+). The MBBs connect by amide amide hydrogen bonds to a 3D robust supramolecular networks [Zn-14(C5H4N4O3)(12)(O) (OH)(2) (DMF)(4) denoted as 1 and 2, respectively, DMF = N,N'-dimethylformamide], which can be activated for N-2, CO2, CH4, and H-2 gas-sorption. (C) 2015 Elsevier Inc. All rights reserved. KW - Flexible linker KW - Gas sorption KW - Gate-effects KW - Hydrogen-bonding KW - Solvothermal synthesis Y1 - 2015 U6 - https://doi.org/10.1016/j.micromeso.2015.01.049 SN - 1387-1811 SN - 1873-3093 VL - 216 SP - 2 EP - 12 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Mueller, Holger A1 - Junginger, Matthias A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Strehmel, Veronika A1 - Holdt, Hans-Jürgen T1 - Imidazolium 2-substituted 4,5-dicyanoimidazolate ionic liquids: synthesis, crystal structures and structure-thermal property relationships JF - Chemistry - a European journal N2 - Thirty six novel ionic liquids (ILs) with 1-butyl-3-methylimidazolium and 3-methyl-1-octylimidazolium cations paired with 2-substitited 4,5-dicyanoimidazolate anions (substituent at C2=chloro, bromo, methoxy, vinyl, amino, methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and phenyl) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and single-crystal X-ray crystallography. The effects of cation and anion type and structure on the thermal properties of the resulting ionic liquids, including several room temperature ionic liquids (RTILs) are examined and discussed. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -68 degrees C. The effects of alkyl substituents of the imidazolate anion reflected the crystallization, melting points and thermal decomposition of the ILs. The Coulombic packing force, van der Waals forces and size of the anions can be considered for altering the thermal transitions. Three crystal structures of the ILs were determined and the effects of changes to the cations and anions on the packing of the structure were investigated. KW - crystal structures KW - imidazole KW - ion exchange KW - ionic liquids KW - pi-pi stacking Y1 - 2014 U6 - https://doi.org/10.1002/chem.201304934 SN - 0947-6539 SN - 1521-3765 VL - 20 IS - 26 SP - 8170 EP - 8181 PB - Wiley-VCH CY - Weinheim ER -