TY - JOUR A1 - Cywinski, Piotr J. A1 - Idzik, Krzysztof R. A1 - Cranfield, Charles G. A1 - Beckert, Rainer A1 - Mohr, Gerhard J. T1 - Synthesis and sensing properties of a new carbazole fluorosensor for detection of abacavir N2 - An abacavir-targeted fluorosensor based on the carbazole moiety has been synthesised and characterised. Recognition of abacavir is by base pairing between a uracil moiety present in the fluorosensor and the guanine moiety of abacavir. The fluorosensor exhibits five-fold quenching in the presence of 50M abacavir. Its sensitivity to abacavir is superior to that of other reverse transcriptase inhibitors: zidovudine, lamivudine and didanosine. Due to its high sensitivity, this fluorosensor has the potential to be used in multi-analyte array-based detection platforms as well as in microfluidics systems. Y1 - 2010 UR - http://www.informaworld.com/openurl?genre=journal&issn=1061-0278 U6 - https://doi.org/10.1080/10610278.2010.506541 SN - 1061-0278 ER - TY - GEN A1 - Idzik, Krzysztof Ryszard A1 - Cywinski, Piotr J. A1 - Cranfield, Charles G. A1 - Mohr, Gerhard J. A1 - Beckert, Rainer T1 - Molecular recognition of the antiretroviral drug Abacavir BT - towards the development of a novel carbazole-based fluorosensor T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Due to their optical and electro-conductive attributes, carbazole derivatives are interesting materials for a large range of biosensor applications. In this study, we present the synthesis routes and fluorescence evaluation of newly designed carbazole fluorosensors that, by modification with uracil, have a special affinity for antiretroviral drugs via either Watson–Crick or Hoogsteen base pairing. To an N-octylcarbazole-uracil compound, four different groups were attached, namely thiophene, furane, ethylenedioxythiophene, and another uracil; yielding four different derivatives. Photophysical properties of these newly obtained derivatives are described, as are their interactions with the reverse transcriptase inhibitors such as abacavir, zidovudine, lamivudine and didanosine. The influence of each analyte on biosensor fluorescence was assessed on the basis of the Stern–Volmer equation and represented by Stern–Volmer constants. Consequently we have demonstrated that these structures based on carbazole, with a uracil group, may be successfully incorporated into alternative carbazole derivatives to form biosensors for the molecular recognition of antiretroviral drugs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 847 KW - HIV KW - HAART KW - antiretroviral drugs KW - carbazole KW - base pairing KW - fluorescence spectroscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430372 SN - 1866-8372 IS - 847 SP - 1195 EP - 1204 ER - TY - JOUR A1 - Idzik, Krzysztof Ryszard A1 - Cywinski, Piotr J. A1 - Cranfield, Charles G. A1 - Mohr, Gerhard J. A1 - Beckert, Rainer T1 - Molecular recognition of the antiretroviral drug abacavir towards the development of a novel carbazole-based fluorosensor JF - Journal of fluorescence N2 - Due to their optical and electro-conductive attributes, carbazole derivatives are interesting materials for a large range of biosensor applications. In this study, we present the synthesis routes and fluorescence evaluation of newly designed carbazole fluorosensors that, by modification with uracil, have a special affinity for antiretroviral drugs via either Watson-Crick or Hoogsteen base pairing. To an N-octylcarbazole-uracil compound, four different groups were attached, namely thiophene, furane, ethylenedioxythiophene, and another uracil; yielding four different derivatives. Photophysical properties of these newly obtained derivatives are described, as are their interactions with the reverse transcriptase inhibitors such as abacavir, zidovudine, lamivudine and didanosine. The influence of each analyte on biosensor fluorescence was assessed on the basis of the Stern-Volmer equation and represented by Stern-Volmer constants. Consequently we have demonstrated that these structures based on carbazole, with a uracil group, may be successfully incorporated into alternative carbazole derivatives to form biosensors for the molecular recognition of antiretroviral drugs. KW - HIV KW - HAART KW - Antiretroviral drugs KW - Carbazole KW - Base pairing KW - Fluorescence spectroscopy Y1 - 2011 U6 - https://doi.org/10.1007/s10895-010-0798-7 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 1195 EP - 1204 PB - Springer CY - New York ER -