TY - JOUR A1 - Weidlich, Matthias A1 - Ziekow, Holger A1 - Gal, Avigdor A1 - Mendling, Jan A1 - Weske, Mathias T1 - Optimizing event pattern matching using business process models JF - IEEE transactions on knowledge and data engineering N2 - A growing number of enterprises use complex event processing for monitoring and controlling their operations, while business process models are used to document working procedures. In this work, we propose a comprehensive method for complex event processing optimization using business process models. Our proposed method is based on the extraction of behaviorial constraints that are used, in turn, to rewrite patterns for event detection, and select and transform execution plans. We offer a set of rewriting rules that is shown to be complete with respect to the all, seq, and any patterns. The effectiveness of our method is demonstrated in an experimental evaluation with a large number of processes from an insurance company. We illustrate that the proposed optimization leads to significant savings in query processing. By integrating the optimization in state-of-the-art systems for event pattern matching, we demonstrate that these savings materialize in different technical infrastructures and can be combined with existing optimization techniques. KW - Event processing KW - query optimisation KW - query rewriting Y1 - 2014 U6 - https://doi.org/10.1109/TKDE.2014.2302306 SN - 1041-4347 SN - 1558-2191 VL - 26 IS - 11 SP - 2759 EP - 2773 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Mendling, Jan A1 - Weske, Mathias T1 - Causal behavioural profiles - efficient computation, applications, and evaluation JF - Fundamenta informaticae N2 - Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S-or T-nets. We also elaborate on the findings of applying our technique to three industry model collections. KW - Causal Behavioural Profiles KW - Formal Methods KW - Behavioural Abstraction KW - Structural Decomposition KW - Exclusiveness KW - Concurrency KW - Order Relations KW - Causality KW - Optionality Y1 - 2011 U6 - https://doi.org/10.3233/FI-2011-614 SN - 0169-2968 VL - 113 IS - 3-4 SP - 399 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Weidlich, Matthias A1 - Polyvyanyy, Artem A1 - Desai, Nirmit A1 - Mendling, Jan A1 - Weske, Mathias T1 - Process compliance analysis based on behavioural profiles JF - Information systems N2 - Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log - a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider. KW - Process compliance KW - Compliance measurement KW - Log conformance KW - Root cause analysis Y1 - 2011 U6 - https://doi.org/10.1016/j.is.2011.04.002 SN - 0306-4379 VL - 36 IS - 7 SP - 1009 EP - 1025 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Efficient consistency measurement based on behavioral profiles of process models JF - IEEE transactions on software engineering N2 - Engineering of process-driven business applications can be supported by process modeling efforts in order to bridge the gap between business requirements and system specifications. However, diverging purposes of business process modeling initiatives have led to significant problems in aligning related models at different abstract levels and different perspectives. Checking the consistency of such corresponding models is a major challenge for process modeling theory and practice. In this paper, we take the inappropriateness of existing strict notions of behavioral equivalence as a starting point. Our contribution is a concept called behavioral profile that captures the essential behavioral constraints of a process model. We show that these profiles can be computed efficiently, i.e., in cubic time for sound free-choice Petri nets w.r.t. their number of places and transitions. We use behavioral profiles for the definition of a formal notion of consistency which is less sensitive to model projections than common criteria of behavioral equivalence and allows for quantifying deviation in a metric way. The derivation of behavioral profiles and the calculation of a degree of consistency have been implemented to demonstrate the applicability of our approach. We also report the findings from checking consistency between partially overlapping models of the SAP reference model. KW - Process model analysis KW - process model alignment KW - behavioral abstraction KW - consistency checking KW - consistency measures Y1 - 2011 U6 - https://doi.org/10.1109/TSE.2010.96 SN - 0098-5589 VL - 37 IS - 3 SP - 410 EP - 429 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Propagating changes between aligned process models JF - The journal of systems and software N2 - There is a wide variety of drivers for business process modelling initiatives, reaching from organisational redesign to the development of information systems. Consequently, a common business process is often captured in multiple models that overlap in content due to serving different purposes. Business process management aims at flexible adaptation to changing business needs. Hence, changes of business processes occur frequently and have to be incorporated in the respective process models. Once a process model is changed, related process models have to be updated accordingly, despite the fact that those process models may only be loosely coupled. In this article, we introduce an approach that supports change propagation between related process models. Given a change in one process model, we leverage the behavioural abstraction of behavioural profiles for corresponding activities in order to determine a change region in another model. Our approach is able to cope with changes in pairs of models that are not related by hierarchical refinement and show behavioural inconsistencies. We evaluate the applicability of our approach with two real-world process model collections. To this end, we either deduce change operations from different model revisions or rely on synthetic change operations. KW - Change propagation KW - Model synchronisation KW - Behavioural analysis KW - Process model alignment Y1 - 2012 U6 - https://doi.org/10.1016/j.jss.2012.02.044 SN - 0164-1212 VL - 85 IS - 8 SP - 1885 EP - 1898 PB - Elsevier CY - New York ER - TY - JOUR A1 - Weidlich, Matthias A1 - Mendling, Jan T1 - Perceived consistency between process models JF - Information systems N2 - Process-aware information systems typically involve various kinds of process stakeholders. That, in turn, leads to multiple process models that capture a common process from different perspectives and at different levels of abstraction. In order to guarantee a certain degree of uniformity, the consistency of such related process models is evaluated using formal criteria. However, it is unclear how modelling experts assess the consistency between process models, and which kind of notion they perceive to be appropriate. In this paper, we focus on control flow aspects and investigate the adequacy of consistency notions. In particular, we report findings from an online experiment, which allows us to compare in how far trace equivalence and two notions based on behavioural profiles approximate expert perceptions on consistency. Analysing 69 expert statements from process analysts, we conclude that trace equivalence is not suited to be applied as a consistency notion, whereas the notions based on behavioural profiles approximate the perceived consistency of our subjects significantly. Therefore, our contribution is an empirically founded answer to the correlation of behaviour consistency notions and the consistency perception by experts in the field of business process modelling. KW - Process model consistency KW - Consistency perception KW - Behavior equivalence KW - Model refinement Y1 - 2012 U6 - https://doi.org/10.1016/j.is.2010.12.004 SN - 0306-4379 VL - 37 IS - 2 SP - 80 EP - 98 PB - Elsevier CY - Oxford ER - TY - BOOK A1 - Smirnov, Sergey A1 - Weidlich, Matthias A1 - Mendling, Jan A1 - Weske, Mathias T1 - Action patterns in business process models N2 - Business process management experiences a large uptake by the industry, and process models play an important role in the analysis and improvement of processes. While an increasing number of staff becomes involved in actual modeling practice, it is crucial to assure model quality and homogeneity along with providing suitable aids for creating models. In this paper we consider the problem of offering recommendations to the user during the act of modeling. Our key contribution is a concept for defining and identifying so-called action patterns - chunks of actions often appearing together in business processes. In particular, we specify action patterns and demonstrate how they can be identified from existing process model repositories using association rule mining techniques. Action patterns can then be used to suggest additional actions for a process model. Our approach is challenged by applying it to the collection of process models from the SAP Reference Model. N2 - Die zunehmende Bedeutung des Geschäftsprozessmanagements führt dazu, dass eine steigende Anzahl von Mitarbeitern eines Unternehmens mit der Erstellung von Prozessmodellen betraut ist. Um trotz dieser Tendenz die Qualität der Prozessmodelle, sowie ihre Homogenität sicherzustellen, sind entsprechende Modellierungshilfen unabdingbar. In diesem Bericht stellen wir einen Ansatz vor, welcher die Prozessmodellierung durch Empfehlungen unterstützt. Jene basieren auf sogenannten Aktionsmustern, welche typische Arbeitsblöcke darstellen. Neben der Definition dieser Aktionsmuster zeigen wir eine Methode zur Identifikation dieser Muster auf. Mittels Techniken der Assoziationsanalyse können die Muster automatisch aus einer Sammlung von Prozessmodellen extrahiert werden. Die Anwendbarkeit unseres Ansatzes wird durch eine Fallstudie auf Basis des SAP Referenzmodells illustriert. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 30 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-33586 SN - 978-3-86956-009-0 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Nikaj, Adriatik A1 - Weske, Mathias A1 - Mendling, Jan T1 - Semi-automatic derivation of RESTful choreographies from business process choreographies JF - Software and systems modeling N2 - Enterprises reach out for collaborations with other organizations in order to offer complex products and services to the market. Such collaboration and coordination between different organizations, for a good share, is facilitated by information technology. The BPMN process choreography is a modeling language for specifying the exchange of information and services between different organizations at the business level. Recently, there is a surging use of the REST architectural style for the provisioning of services on the web, but few systematic engineering approach to design their collaboration. In this paper, we address this gap in a comprehensive way by defining a semi-automatic method for the derivation of RESTful choreographies from process choreographies. The method is based on natural language analysis techniques to derive interactions from the textual information in process choreographies. The proposed method is evaluated in terms of effectiveness resulting in the intervention of a web engineer in only about 10% of all generated RESTful interactions. KW - Business process choreographies KW - RESTful choreographies KW - Natural language analysis Y1 - 2019 U6 - https://doi.org/10.1007/s10270-017-0653-2 SN - 1619-1366 SN - 1619-1374 VL - 18 IS - 2 SP - 1195 EP - 1208 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Mendling, Jan A1 - Weber, Ingo A1 - van der Aalst, Wil A1 - Brocke, Jan Vom A1 - Cabanillas, Cristina A1 - Daniel, Florian A1 - Debois, Soren A1 - Di Ciccio, Claudio A1 - Dumas, Marlon A1 - Dustdar, Schahram A1 - Gal, Avigdor A1 - Garcia-Banuelos, Luciano A1 - Governatori, Guido A1 - Hull, Richard A1 - La Rosa, Marcello A1 - Leopold, Henrik A1 - Leymann, Frank A1 - Recker, Jan A1 - Reichert, Manfred A1 - Reijers, Hajo A. A1 - Rinderle-Ma, Stefanie A1 - Solti, Andreas A1 - Rosemann, Michael A1 - Schulte, Stefan A1 - Singh, Munindar P. A1 - Slaats, Tijs A1 - Staples, Mark A1 - Weber, Barbara A1 - Weidlich, Matthias A1 - Weske, Mathias A1 - Xu, Xiwei A1 - Zhu, Liming T1 - Blockchains for Business Process Management BT - Challenges and Opportunities JF - ACM Transactions on Management Information Systems N2 - Blockchain technology offers a sizable promise to rethink the way interorganizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this article, we outline the challenges and opportunities of blockchain for business process management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven research directions for investigating the application of blockchain technology in the context of BPM. KW - Blockchain KW - business process management KW - research challenges Y1 - 2018 U6 - https://doi.org/10.1145/3183367 SN - 2158-656X SN - 2158-6578 VL - 9 IS - 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Leopold, Henrik A1 - Mendling, Jan A1 - Guenther, Oliver T1 - Learning from Quality Issues of BPMN Models from Industry JF - IEEE software N2 - Many organizations use business process models to document business operations and formalize business requirements in software-engineering projects. The Business Process Model and Notation (BPMN), a specification by the Object Management Group, has evolved into the leading standard for process modeling. One challenge is BPMN's complexity: it offers a huge variety of elements and often several representational choices for the same semantics. This raises the question of how well modelers can deal with these choices. Empirical insights into BPMN use from the practitioners' perspective are still missing. To close this gap, researchers analyzed 585 BPMN 2.0 process models from six companies. They found that split and join representations, message flow, the lack of proper model decomposition, and labeling related to quality issues. They give five specific recommendations on how to avoid these issues. KW - process model quality KW - modeling guidelines KW - Business Process Model and Notation KW - BPMN KW - industry study KW - software engineering KW - software development Y1 - 2016 U6 - https://doi.org/10.1109/MS.2015.81 SN - 0740-7459 SN - 1937-4194 VL - 33 SP - 26 EP - 33 PB - Inst. of Electr. and Electronics Engineers CY - Los Alamitos ER -