TY - JOUR A1 - Moreno, Marcelo Spegiorin A1 - Melnick, Daniel A1 - Rosenau, M. A1 - Bolte, John A1 - Klotz, Jan A1 - Echtler, Helmut Peter A1 - Báez, Juan Carlos A1 - Bataille, Klaus A1 - Chen, J. A1 - Bevis, M. A1 - Hase, H. A1 - Oncken, Onno T1 - Heterogeneous plate locking in the South-Central Chile subduction zone building up the next great earthquake JF - Earth & planetary science letters N2 - We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36 degrees S -46 degrees S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (M-w = 9.5) and 2010 (M-w = 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the similar to 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M similar to 8 event if triggered to fail by stress transfer from the 2010 event. KW - GPS KW - Chile KW - Maule KW - locking degree KW - postseismic deformation KW - earthquake cycle Y1 - 2011 U6 - https://doi.org/10.1016/j.epsl.2011.03.025 SN - 0012-821X VL - 305 IS - 3-4 SP - 413 EP - 424 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Melnick, Daniel A1 - Li, Shaoyang A1 - Moreno, Marcos A1 - Cisternas, Marco A1 - Jara Muñoz, Julius A1 - Wesson, Robert A1 - Nelson, Alan A1 - Báez, Juan Carlos A1 - Deng, Zhiguo T1 - Back to full interseismic plate locking decades after the giant 1960 Chile earthquake T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Great megathrust earthquakes arise from the sudden release of energy accumulated during centuries of interseismic plate convergence. The moment deficit (energy available for future earthquakes) is commonly inferred by integrating the rate of interseismic plate locking over the time since the previous great earthquake. But accurate integration requires knowledge of how interseismic plate locking changes decades after earthquakes, measurements not available for most great earthquakes. Here we reconstruct the post-earthquake history of plate locking at Guafo Island, above the seismogenic zone of the giant 1960 (M-w = 9.5) Chile earthquake, through forward modeling of land-level changes inferred from aerial imagery (since 1974) and measured by GPS (since 1994). We find that interseismic locking increased to similar to 70% in the decade following the 1960 earthquake and then gradually to 100% by 2005. Our findings illustrate the transient evolution of plate locking in Chile, and suggest a similarly complex evolution elsewhere, with implications for the time- and magnitude-dependent probability of future events. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 678 KW - south-central Chile KW - continuous GPS measurements KW - andean subduction zone KW - finite-element model KW - 2010 M8.8 maule KW - postseismic deformation KW - megathrust earthquake KW - afterslip KW - slip KW - resolution Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425723 SN - 1866-8372 IS - 678 ER -