TY - JOUR A1 - Mellinger, Axel A1 - Flores Suárez, Rosaura A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Zerstörungsfreie Tomographie von Raumladungs- und Polarisationsverteilungen mittles Wärmepulsen N2 - Non-destructive, three-dimensional imaging of space-charge and polarization distributions in electret materials has been implemented by means of laser-induced thermal pulses. In pyroelectric films of poled poly(vinylidene fluoride), images of up to 45 x 45 pixels with a depth resolution of less than 0.5 mu m and a lateral resolution of 40 mu m were recorded, the latter being limited by fast thermal diffusion in the absorbing metallic front electrode. Initial applications include the analysis of polarization distributions in corona-poled piezoelectric sensor cables and the detection of patterned space-charge distributions in polytetrafluoroethylene films. Y1 - 2007 UR - http://www.oldenbourg-link.com/loi/teme U6 - https://doi.org/10.1524/teme.2007.74.9.437 SN - 0171-8096 ER - TY - JOUR A1 - Mellinger, Axel T1 - Unbiased iterative reconstruction of polarization and space-charge profiles from thermal-wave experiments N2 - The thermal-wave technique or laser-intensity modulation method is an important tool for the non-destructive probing of space-charge and polarization profiles in electrets. Analysing the experimental data requires solving a Fredholm integral equation which is known to be an ill-conditioned problem. This paper presents an iterative approach that is capable of reconstructing inherently unsmooth distributions. The deviations from the true profiles are slightly smaller than those obtained with Tikhonov regularization, while the computational burden is not a limiting factor on modem personal computers. The optimum number of iterations is estimated using the randomized generalized cross- validation technique. Results are shown for a number of model distributions, as well as for experimental data from a layered polyvinylidene fluoride film sandwich Y1 - 2004 SN - 0957-0233 ER - TY - JOUR A1 - Mellinger, Axel A1 - Gonzalez, Francisco Camacho A1 - Gerhard, Reimund T1 - Ultraviolet-induced discharge currents and reduction of piezoelectric coefficient in cellular polypropylene films Y1 - 2003 ER - TY - JOUR A1 - Qiu, Xunlin A1 - Gerhard, Reimund A1 - Mellinger, Axel T1 - Turning polymer foams or polymer-film systems into ferroelectrets dielectric barrier discharges in voids JF - IEEE transactions on dielectrics and electrical insulation N2 - Polymer foams and void-containing polymer-film systems with internally charged voids combine large piezoelectricity with mechanical flexibility and elastic compliance. This new class of soft materials (often called ferro-or piezoelectrets) has attracted considerable attention from science and industry. It has been found that the voids can be internally charged by means of dielectric barrier discharges (DBDs) under high electric fields. The charged voids can be considered as man-made macroscopic dipoles. Depending on the ferroelectret structure and the pressure of the internal gas, the voids may be highly compressible. Consequently, very large dipole-moment changes can be induced by mechanical or electrical stresses, leading to large piezoelectricity. DBD charging of the voids is a critical process for rendering polymer foams piezoelectric. Thus a comprehensive exploration of DBD charging is essential for the understanding and the optimization of piezoelectricity in ferroelectrets. Recent studies show that DBDs in the voids are triggered when the internal electric field reaches a threshold value according to Townsend's model of Paschen breakdown. During the DBDs, charges of opposite polarity are generated and trapped at the top and bottom internal surfaces of the gas-filled voids, respectively. The deposited charges induce an electric field opposite to the externally applied one and thus extinguish the DBDs. Back discharges may eventually be triggered when the external voltage is reduced or turned off. In order to optimize the efficiency of DBD charging, the geometry (in particular the height) of the voids, the type of gas and its pressure inside the voids are essential factors to be considered and to be optimized. In addition, the influence of the plasma treatment on the internal void surfaces during the DBDs should be taken into consideration. KW - Ferroelectret KW - piezoelectret KW - dielectric barrier discharge (DBD) KW - effective polarization KW - man-made dipole Y1 - 2011 U6 - https://doi.org/10.1109/TDEI.2011.5704490 SN - 1070-9878 VL - 18 IS - 1 SP - 34 EP - 42 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Harris, Scott A1 - Mellinger, Axel T1 - Towards a better understanding of dielectric barrier discharges in ferroelectrets: Paschen breakdown fields in micrometer sized voids JF - Journal of applied physics N2 - Charged cellular polypropylene foams (i.e., ferro-or piezoelectrets) demonstrate high piezoelectric activity upon being electrically charged. When an external electric field is applied, dielectric barrier discharges (DBDs) occur, resulting in a separation of charges which are subsequently deposited on dielectric surfaces of internal micrometer sized voids. This deposited space charge is responsible for the piezoelectric activity of the material. Previous studies have indicated charging fields larger than predicted by Townsend's model of Paschen breakdown applied to a multilayered electromechanical model; a discrepancy which prompted the present study. The actual breakdown fields for micrometer sized voids were determined by constructing single cell voids using polypropylene spacers with heights ranging from 8 to 75 mu m, "sandwiched" between two polypropylene dielectric barriers and glass slides with semi-transparent electrodes. Subsequently, a bipolar triangular charging waveform with a peak voltage of 6 kV was applied to the samples. The breakdown fields were determined by monitoring the emission of light due to the onset of DBDs using an electron multiplying CCD camera. The breakdown fields at absolute pressures from 101 to 251 kPa were found to be in good agreement with the standard Paschen curves. Additionally, the magnitude of the light emission was found to scale linearly with the amount of gas, i.e., the height of the voids. Emissions were homogeneous over the observed regions of the voids for voids with heights of 25 lm or less and increasingly inhomogeneous for void heights greater than 40 lm at high electric fields. Y1 - 2014 U6 - https://doi.org/10.1063/1.4871678 SN - 0021-8979 SN - 1089-7550 VL - 115 IS - 16 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Basso, Heitor Cury A1 - Altafim, Ruy Alberto Pisani A1 - Altafim, Ruy Alberto Pisani A1 - Mellinger, Axel A1 - Fang, Peng A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Three-layer ferroelectrets from perforated Teflon-PTFE films fused between two homogeneous Teflon-FEP films Y1 - 2007 SN - 978-1-4244-1482-6 ER - TY - JOUR A1 - Mellinger, Axel A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Lang, Sidney B. T1 - Three-dimensional mapping of polarization profiles with thermal pulses N2 - High-resolution, large-area three-dimensional mapping of polarization profiles in electret polymers was carried out by means of a fast thermal pulse technique with a focused laser beam. A lateral resolution of 38 mu m and a near- surface depth resolution of less than 0.5 mu m was achieved. At larger depths, fast thermal diffusion in the metal electrode rather than the laser spot size becomes the limiting factor for the lateral resolution. (c) 2005 American Institute of Physics Y1 - 2005 SN - 0003-6951 ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Thermally stable dynamic piezoelectricity in sandwich films of porous and non-porous amorphous fluoropolymer Y1 - 2001 ER - TY - JOUR A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Singh, Rajeev T1 - Thermal-pulse tomography of polarization distributions in a cylindrical geometry JF - IEEE transactions on dielectrics and electrical insulation N2 - Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries. Y1 - 2006 U6 - https://doi.org/10.1109/TDEI.2006.258210 SN - 1070-9878 VL - 13 IS - 5 SP - 1030 EP - 1035 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Mallepally, Rajendar Reddy A1 - Gerhard, Reimund T1 - Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites N2 - Ferroelectrets are thin films of polymer foams, exhibiting piezoelectric properties after electrical charging. Ferroelectret foams usually consist of a cellular polymer structure filled with air. Polymer-air composites are elastically soft due to their high air content as well as due to the size and shape of the polymer walls. Their elastically soft composite structure is one essential key for the working principle of ferroelectrets, besides the permanent trapping of electric charges inside the polymer voids. The elastic properties allow large deformations of the electrically charged voids. However, the composite structure can also possibly limit the stability and consequently the range of applications because of, e. g., penetration of gas and liquids accompanied by discharge phenomena or because of a mechanical pre-load which may be required during the application. Here, we discuss various stability aspects related to the piezoelectric properties of polypropylene ferroelectrets. Near and below room temperature, the piezoelectric effect and the stability of the trapped charges are practically independent from humidity during long-time storage in a humid atmosphere or water, or from operating conditions, such as continuous mechanical excitation. Thermal treatment of cellular polypropylene above -10 degrees C leads to a softening of the voided structure which is apparent from the decreasing values of the elastic modulus. This decrease results in an increase of the piezoelectric activity. Heating above 60 degrees C, however, leads to a decrease in piezoelectricity Y1 - 2006 ER -