TY - JOUR A1 - Chambodut, Aude A1 - Mandea, Mioara T1 - Evidence for geomagnetic jerks in comprehensive models N2 - The rate of secular variation occasionally undergoes a sudden, sharp change, called a geomagnetic jerk. Such jerks have been detected in geomagnetic time series, centered-over the last four decades-around 1971, 1980, 1991, and 1999; others have been inferred from historical records. The geomagnetic jerks represent a reorganization of the secular variation, implying an internal origin, as established through spherical harmonic and wavelet analysis. However, some characteristics of jerks are not well understood. Here we estimate the occurrence dates for geomagnetic jerks, as they can be detected from a global geomagnetic model. This choice makes the present study novel, for two reasons. First, utilizing the comprehensive modelling approach allows for the use of a secular variation signal free of time-varying external fields and their corresponding induced counterpart, and observatory biases. Second, the model utilizes satellite data when available, in addition to observatory data. Indeed, POGO (1967 to 1971), MAGSAT (1979 to 1980), Orsted (1999 to present time) and CHAMP (2000 to present time) satellite measurements help to separate the different magnetic sources. In this study the CM4 comprehensive model is used for a global search of geomagnetic jerks and their occurrence dates. Our first result indicates that found geomagnetic jerks might not have been worldwide in occurrence. Moreover, the obtained dates suggest that jerks detected in the CM4 model over the last four decades occurred not simultaneously but at slightly different times around 1971, 1980 and 1991 Y1 - 2005 SN - 1343-8832 ER - TY - JOUR A1 - Chambodut, Aude A1 - Panet, I. A1 - Mandea, Mioara A1 - Diament, M. A1 - Holschneider, Matthias A1 - Jamet, O. T1 - Wavelet frames : an alternative to spherical harmonic representation of potential fields N2 - Potential fields are classically represented on the sphere using spherical harmonics. However, this decomposition leads to numerical difficulties when data to be modelled are irregularly distributed or cover a regional zone. To overcome this drawback, we develop a new representation of the magnetic and the gravity fields based on wavelet frames. In this paper, we first describe how to build wavelet frames on the sphere. The chosen frames are based on the Poisson multipole wavelets, which are of special interest for geophysical modelling, since their scaling parameter is linked to the multipole depth (Holschneider et al.). The implementation of wavelet frames results from a discretization of the continuous wavelet transform in space and scale. We also build different frames using two kinds of spherical meshes and various scale sequences. We then validate the mathematical method through simple fits of scalar functions on the sphere, named 'scalar models'. Moreover, we propose magnetic and gravity models, referred to as 'vectorial models', taking into account geophysical constraints. We then discuss the representation of the Earth's magnetic and gravity fields from data regularly or irregularly distributed. Comparisons of the obtained wavelet models with the initial spherical harmonic models point out the advantages of wavelet modelling when the used magnetic or gravity data are sparsely distributed or cover just a very local zone Y1 - 2005 SN - 0956-540X ER -