TY - JOUR A1 - De Biase, Cecilia A1 - Maier, Uli A1 - Baeder-Bederski, Oliver A1 - Bayer, Peter A1 - Oswald, Sascha Eric A1 - Thullner, Martin T1 - Removal of volatile organic compounds in vertical flow filters - predictions from reactive transport modeling JF - Ground water monitoring & remediation N2 - Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot-scale vertical flow filter intermittently fed with domestic waste water, model predictions on the systems performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective-diffusive gas-phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds. Y1 - 2012 U6 - https://doi.org/10.1111/j.1745-6592.2011.01374.x SN - 1069-3629 VL - 32 IS - 2 SP - 106 EP - 121 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - De Biase, Cecilia A1 - Reger, Daniel A1 - Schmidt, Axel A1 - Jechalke, Sven A1 - Reiche, Nils A1 - Martinez-Lavanchy, Paula M. A1 - Rosell, Monica A1 - Van Afferden, Manfred A1 - Maier, Uli A1 - Oswald, Sascha Eric A1 - Thullner, Martin T1 - Treatment of volatile organic contaminants in a vertical flow filter - relevance of different removal processes JF - Ecological engineering : the journal of ecotechnology N2 - Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The filter is intermittently irrigated with contaminated groundwater containing benzene, MTBE and ammonium as the main contaminants. The system is characterized by unsaturated conditions and high contaminant removal efficiency. The aim of the present study is to evaluate the contribution of biodegradation and volatilization to the overall removal of benzene and MTBE. Tracer tests and flow rate measurements showed a highly transient flow and heterogeneous transport regime. Radon-222, naturally occurring in the treated groundwater, was used as a gas tracer and indicated a high volatilization potential. Radon-222 behavior was reproduced by numerical simulations and extrapolated for benzene and MTBE, and indicated these compounds also have a high volatilization potential. In contrast, passive sampler measurements on top of the filter detected only low benzene and MTBE concentrations. Biodegradation potential was evaluated by the analysis of catabolic genes involved in organic compound degradation and a quantitative estimation of biodegradation was derived from stable isotope fractionation analysis. Results suggest that despite the high volatilization potential, biodegradation is the predominant mass removal process in the filter system, which indicates that the volatilized fraction of the contaminants is still subject to subsequent biodegradation. In particular, the upper filter layer located between the injection tubes and the surface of the system might also contribute to biodegradation, and might play a crucial role in avoiding the emission of volatilized contaminants into the atmosphere. KW - Benzene KW - Biodegradation KW - Catabolic genes KW - MTBE KW - Numerical modeling KW - Radon KW - SAFIRA II KW - Stable isotope fractionation analysis KW - Tracers KW - VOCs KW - Volatilization Y1 - 2011 U6 - https://doi.org/10.1016/j.ecoleng.2011.03.023 SN - 0925-8574 VL - 37 IS - 9 SP - 1292 EP - 1303 PB - Elsevier CY - Amsterdam ER -