TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 Years JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Mueller, J, Mueller, S, Stoll, J, Baur, H, and Mayer, F. Trunk extensor and flexor strength capacity in healthy young elite athletes aged 11-15 years. J Strength Cond Res 28(5): 1328-1334, 2014-Differences in trunk strength capacity because of gender and sports are well documented in adults. In contrast, data concerning young athletes are sparse. The purpose of this study was to assess the maximum trunk strength of adolescent athletes and to investigate differences between genders and age groups. A total of 520 young athletes were recruited. Finally, 377 (n = 233/144 M/F; 13 +/- 1 years; 1.62 +/- 0.11 m height; 51 +/- 12 kg mass; training: 4.5 +/- 2.6 years; training sessions/week: 4.3 +/- 3.0; various sports) young athletes were included in the final data analysis. Furthermore, 5 age groups were differentiated (age groups: 11, 12, 13, 14, and 15 years; n = 90, 150, 42, 43, and 52, respectively). Maximum strength of trunk flexors (Flex) and extensors (Ext) was assessed in all subjects during isokinetic concentric measurements (60 degrees center dot s(-1); 5 repetitions; range of motion: 55 degrees). Maximum strength was characterized by absolute peak torque (Flex(abs), Ext(abs); N center dot m), peak torque normalized to body weight (Flex(norm), Ext(norm); N center dot m center dot kg(-1) BW), and Flex(abs)/Ext(abs) ratio (RKquot). Descriptive data analysis (mean +/- SD) was completed, followed by analysis of variance (alpha = 0.05; post hoc test [Tukey-Kramer]). Mean maximum strength for all athletes was 97 +/- 34 N center dot m in Flex(abs) and 140 +/- 50 N center dot m in Ext(abs) (Flex(norm) = 1.9 +/- 0.3 N center dot m center dot kg(-1) BW, Ext(norm) = 2.8 +/- 0.6 N center dot m center dot kg(-1) BW). Males showed statistically significant higher absolute and normalized values compared with females (p < 0.001). Flex(abs) and Ext(abs) rose with increasing age almost 2-fold for males and females (Flex(abs), Ext(abs): p < 0.001). Flex(norm) and Ext(norm) increased with age for males (p < 0.001), however, not for females (Flex(norm): p = 0.26; Ext(norm): p = 0.20). RKquot (mean +/- SD: 0.71 +/- 0.16) did not reveal any differences regarding age (p = 0.87) or gender (p = 0.43). In adolescent athletes, maximum trunk strength must be discussed in a gender- and age-specific context. The Flex(abs)/Ext(abs) ratio revealed extensor dominance, which seems to be independent of age and gender. The values assessed may serve as a basis to evaluate and discuss trunk strength in athletes. KW - core KW - adolescents KW - isokinetic KW - strength performance Y1 - 2014 U6 - https://doi.org/10.1519/JSC.0000000000000280 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 5 SP - 1328 EP - 1334 PB - Lippincott Williams & Wilkins CY - Philadelphia ER -