TY - JOUR A1 - Toeroek, T. A1 - Leake, J. E. A1 - Titov, Viacheslav S. A1 - Archontis, V. A1 - Mikic, Z. A1 - Linton, M. G. A1 - Dalmasse, K. A1 - Aulanier, Guillaume A1 - Kliem, Bernhard T1 - Distribution of electric currents in solar active regions JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: coronal mass ejections (CMEs) Y1 - 2014 U6 - https://doi.org/10.1088/2041-8205/782/1/L10 SN - 2041-8205 SN - 2041-8213 VL - 782 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Toeroek, T. A1 - Kliem, Bernhard A1 - Berger, M. A. A1 - Linton, M. G. A1 - Demoulin, Pascal A1 - van Driel-Gesztelyi, L. T1 - The evolution of writhe in kink-unstable flux ropes and erupting filaments JF - Plasma physics and controlled fusion N2 - The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-emptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially precludes estimations of pre-eruptive twist from measurements of writhe. However, our simulations suggest an upper twist limit of similar to 6 pi for the majority of filaments prior to their eruption. KW - magnetohydrodynamics (MHD) KW - Sun: corona KW - Sun: filaments Y1 - 2014 U6 - https://doi.org/10.1088/0741-3335/56/6/064012 SN - 0741-3335 SN - 1361-6587 VL - 56 IS - 6 PB - IOP Publ. Ltd. CY - Bristol ER -