TY - JOUR A1 - Zhou, Suqiong A1 - Pan, Yuanwei A1 - Zhang, Jianguang A1 - Li, Yan A1 - Neumann, Falko A1 - Schwerdtle, Tanja A1 - Li, Wenzhong A1 - Haag, Rainer T1 - Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells JF - Nanoscale N2 - Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate. Y1 - 2020 U6 - https://doi.org/10.1039/d0nr06570f SN - 2040-3364 SN - 2040-3372 VL - 12 IS - 47 SP - 24006 EP - 24019 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Li, Mingjun A1 - Gao, Lingyan A1 - Schlaich, Christoph A1 - Zhang, Jianguang A1 - Donskyi, Ievgen S. A1 - Yu, Guozhi A1 - Li, Wenzhong A1 - Tu, Zhaoxu A1 - Rolff, Jens A1 - Schwerdtle, Tanja A1 - Haag, Rainer A1 - Ma, Nan T1 - Construction of Functional Coatings with Durable and Broad-Spectrum Antibacterial Potential Based on Mussel-Inspired Dendritic Polyglycerol and in Situ-Formed Copper Nanoparticles JF - ACS applied materials & interfaces N2 - A novel surface coating with durable broad-spectrum antibacterial ability was prepared based on mussel inspired dendritic polyglycerol (MI-dPG) embedded with copper nanoparticles (Cu NPs). The functional surface coating is fabricated via a facile dip-coating process followed by in situ reduction of copper ions with a MI-dPG coating to introduce Cu NPs into the coating matrix. This coating has been demonstrated to possess efficient long-term antibacterial properties against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and kanamycin-resistant E. coli through an "attract-kill-release" strategy. The synergistic antibacterial activity of the coating was shown by the combination of two functions of the contact killing, reactive oxygen species production and Cu ions released from the coating. Furthermore, this coating inhibited biofilm formation and showed good compatibility to eukaryotic cells. Thus, this newly developed Cu NP-incorporated MI-dPG surface coating may find potential application in the design of antimicrobial coating, such as implantable devices. KW - Cu NP-incorporated MI-dPG coating KW - universal coating KW - in situ chemical reduction KW - antibacterial effect KW - drug-resistant bacteria Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b10541 SN - 1944-8244 VL - 9 SP - 35411 EP - 35418 PB - American Chemical Society CY - Washington ER -