TY - JOUR A1 - Li, Shaoyang A1 - Moreno, Marcos A1 - Rosenau, Matthias A1 - Melnick, Daniel A1 - Oncken, Onno T1 - Splay fault triggering by great subduction earthquakes inferred from finite element models JF - Geophysical research letters N2 - We have investigated the influence that megathrust earthquake slip has on the activation of splay faults using a 2-D finite element method (FEM), taking into account the effects of gravity and variations in the frictional strength properties of splay faults. We simulated both landward-dipping and seaward-dipping splay fault geometries, and imposed depth-variable slip distributions of subduction events. Our results indicate that the two types of splay fault exhibit a similar behavior, with variations in frictional properties along the faults affecting only the seismic magnitude. The triggering process is controlled by a critical depth. Megathrust slip concentrated at depths shallower than the critical depth will favor normal displacement, while megathrust slip concentrated at depths deeper than the critical depth is likely to result in reverse motion. Our results thus provide a useful tool for predicting the activation of secondary faults and may have direct implications for tsunami hazard research. KW - earthquake deformation KW - subduction zone earthquakes KW - splay faults KW - faulting behavior KW - FEM models KW - tsunami hazards Y1 - 2014 U6 - https://doi.org/10.1002/2013GL058598 SN - 0094-8276 SN - 1944-8007 VL - 41 IS - 2 SP - 385 EP - 391 PB - American Geophysical Union CY - Washington ER -