TY - JOUR A1 - Cherubini, Yvonne A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena A1 - Moeck, Inga A1 - Lewerenz, Björn T1 - Controls on the deep thermal field - implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck JF - Environmental earth sciences N2 - The deep thermal field in sedimentary basins can be affected by convection, conduction or both resulting from the structural inventory, physical properties of geological layers and physical processes taking place therein. For geothermal energy extraction, the controlling factors of the deep thermal field need to be understood to delineate favorable drill sites and exploitation compartments. We use geologically based 3-D finite element simulations to figure out the geologic controls on the thermal field of the geothermal research site Gro Schonebeck located in the E part of the North German Basin. Its target reservoir consists of Permian Rotliegend clastics that compose the lower part of a succession of Late Carboniferous to Cenozoic sediments, subdivided into several aquifers and aquicludes. The sedimentary succession includes a layer of mobilized Upper Permian Zechstein salt which plays a special role for the thermal field due to its high thermal conductivity. Furthermore, the salt is impermeable and due to its rheology decouples the fault systems in the suprasalt units from subsalt layers. Conductive and coupled fluid and heat transport simulations are carried out to assess the relative impact of different heat transfer mechanisms on the temperature distribution. The measured temperatures in 7 wells are used for model validation and show a better fit with models considering fluid and heat transport than with a purely conductive model. Our results suggest that advective and convective heat transport are important heat transfer processes in the suprasalt sediments. In contrast, thermal conduction mainly controls the subsalt layers. With a third simulation, we investigate the influence of a major permeable and of three impermeable faults dissecting the subsalt target reservoir and compare the results to the coupled model where no faults are integrated. The permeable fault may have a local, strong impact on the thermal, pressure and velocity fields whereas the impermeable faults only cause deviations of the pressure field. KW - Thermal field KW - Coupled fluid and heat transport KW - Faults KW - Groß beta Schönebeck Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2519-4 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3619 EP - 3642 PB - Springer CY - New York ER -