TY - JOUR A1 - Leonhardt, Helmar A1 - Gerhardt, Matthias A1 - Hoeppner, Nadine A1 - Krüger, Kirsten A1 - Tarantola, Marco A1 - Beta, Carsten T1 - Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevE.93.012414 SN - 2470-0045 SN - 2470-0053 VL - 93 PB - American Physical Society CY - College Park ER - TY - THES A1 - Leonhardt, Helmar T1 - Chemotaxis, shape and adhesion dynamics of amoeboid cells studied by impedance fluctuations in open and confined spaces T1 - Chemotaxis, Formänderung und Adhäsionsdynamik amöboider Zellen gemessen durch Impedanzfluktuation N2 - Die vorliegende Arbeit befasst sich mit elektrischen Impedanzmessungen von ameoboiden Zellen auf Mikroelektroden. Der Modellorganismus Dictyostelium discoideum zeigt unter der Bedingung des Nahrungsentzugs einen Übergang zum kollektiven Verhalten, bei dem sich chemotaktische Zellen zu einem multizellulären Aggregat zusammenschliessen. Wir zeigen wie Impedanzaufnahmen über die Dynamik der Zell-substrat Adhäsion ein präzises Bild der Phasen der Aggregation liefern. Darüberhinaus zeigen wir zum ersten mal systematische Einzelzellmessungen von Wildtyp-Zellen und vier Mutanten, die sich in der Stärke der Substratadh äsion unterscheiden. Wir zeichneten die projizierte Zellfläche durch Zeitverlaufsmikroskopie auf und fanden eine Korrelation zwischen den quasi-periodischen Oszillationen in der Kinetik der projizierten Fläche - der Zellform-Oszillation - und dem Langzeittrend des Impedanzsignals. Amoeboidale Motilität offenbart sich typischerweise durch einen Zyklus von Membranausstülpung, Substratadhäsion, Vorwärtsziehen des Zellkörpers und Einziehen des hinteren Teils der Zelle. Dieser Motilitätszyklus resultiert in quasi-periodischen Oszillationen der projizierten Zellfläche und der Impedanz. In allen gemessenen Zelllinien wurden für diesen Zyklus ähnliche Periodendauern beobachtet trotz der Unterschiede in der Anhaftungsstärke. Wir beobachteten, dass die Stärke der Zell-substrat Anhaftung die Impedanz stark beeinflusst, indem die Abweichungen vom Mittelwert (die Grösse der Fluktuationen) vergrössert sind bei Zellen, die die vom Zytoskelett generierten Kräfte effektiv auf das Substrat übertragen. Zum Beispiel sind bei talA- Zellen, in welchen das Actin verankernde Protein Talin fehlt, die Fluktuationen stark reduziert. Einzelzellkraft-Spektroskopie und Ergebnisse eines Ablösungsassays, bei dem Adhäsionskraft gemessen wird indem Zellen einer Scherspannung ausgesetzt werden, bestätigen, dass die Grösse der Impedanz-fluktuationen ein korrektes Mass für die Stärke der Substratadhäsion ist. Schliesslich haben wir uns auch mit dem Einbau von Zell-substrat-Impedanz-Sensoren in mikro-fluidische Apparaturen befasst. Ein chip-basierter elektrischer Chemotaxis Assay wurde entwickelt, der die Geschwindigkeit chemotaktischer Zellen misst, welche entlang eines chemischen Konzentrationsgradienten über Mikroelektroden wandern. N2 - We present electrical impedance measurements of amoeboid cells on microelectrodes. The model organism Dictyostelium discoideum shows under starvation conditions a transition to collective behavior when chemotactic cells collect in multicellular aggregates. We show how impedance recordings give a precise picture of the stages of aggregation by tracing the dynamics of cell-substrate adhesion. Furthermore, we present for the first time systematic single cell measurements of wild type cells and four mutant strains that differ in their substrate adhesion strength. We recorded the projected cell area by time lapse microscopy and found a correlation between quasi-periodic oscillations in the kinetics of the projected area - the cell shape oscillation - and the long-term trend in the impedance signal. Typically, amoeboid motility advances via a cycle of membrane protrusion, substrate adhesion, traction of the cell body and tail retraction. This motility cycle results in the quasi-periodic oscillations of the projected cell area and the impedance. In all cell lines measured, similar periods were observed for this cycle, despite the differences in attachment strength. We observed that cell-substrate attachment strength strongly affects the impedance in that the deviations from mean (the magnitude of fluctuations) are enhanced in cells that effectively transmit forces, generated by the cytoskeleton, to the substrate. For example, in talA- cells, which lack the actin anchoring protein talin, the fluctuations are strongly reduced. Single cell force spectroscopy and results from a detachment assay, where adhesion is measured by exposing cells to shear stress, confirm that the magnitude of impedance fluctuations is a correct measure for the strength of substrate adhesion. Finally, we also worked on the integration of cell-substrate impedance sensors into microfluidic devices. A chip-based electrical chemotaxis assay is designed which measures the speed of chemotactic cells migrating over microelectrodes along a chemical concentration gradient. KW - ECIS KW - cell-substrate adhesion KW - cell movement KW - electrical chemotaxis assay KW - ECIS KW - Zell-substrat Adhäsion KW - Zell Bewegung KW - elektrischer Chemotaxis Assy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-405016 ER -