TY - GEN A1 - Lutz, Jean-Francois A1 - Kristen, Juliane A1 - Skrabania, Katja A1 - Laschewsky, Andre T1 - POLY 14-Synthetic strategies for preparing multicompartment micelles T2 - Abstracts of papers / American Chemical Society N2 - The fabrication of compartmented micellar systems is an exciting new area of research in the field of polymer self-assembly. Multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core can be obtained via direct aqueous self-assembly of preformed polymeric amphiphiles possessing one hydrophilic segment and two incompatible hydrophobic segments (e.g. hydrocarbon and fluorocarbon blocks). Such macromolecular building-blocks were prepared in the present work principally via reversible addition-fragmentation transfer polymerization (RAFT). Polysoaps or triblock macrosurfactants can be synthesized in high yields by RAFT under relatively straightforward experimental conditions. Y1 - 2006 SN - 0-8412-7426-6 SN - 0065-7727 VL - 232 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Laschewsky, André A1 - Garnier, Sebastien A1 - Kirsten, Juliane A1 - Mertoglu, Murat A1 - Skrabania, Katja A1 - Lutz, Jean-Francois T1 - Comb-like polymeric surfactants by combining block and graft copolymer architectures Y1 - 2006 SN - 0065-7727 ER - TY - JOUR A1 - Lutz, Jean-Francois A1 - Laschewsky, André T1 - Multicompartment micelles : has the long-standing dream become a reality? N2 - Multicompartment micelles are complex nanosized systems that possess a hydrosoluble shell and a hydrophobic core, which is characterized by segregated incompatible subdomains. With roots starting about ten years ago, the field of multi compartment micelles has evolved slowly, until recently when significant achievements have been made. The present article reviews strategies for building such micellar assemblies as well as morphological studies, highlights the future challenges, and discusses possible applications, which exploit the coexistence of differentiated nano- domains. Formation of multi compartment micelles using miktoarm stars mu-(polyethylethylene)(poly(ethylene oxide))(poly(perfluoropropylene oxide)) and a cryo-TEM image visualizing the process Y1 - 2005 SN - 1022-1352 ER - TY - JOUR A1 - Uhlig, Katja A1 - Wischerhoff, Erik A1 - Lutz, Jean-Francois A1 - Laschewsky, André A1 - Jäger, Magnus S. A1 - Lankenau, Andreas A1 - Duschl, Claus T1 - Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy N2 - Recently, we introduced a thermoresponsive copolymer that consists of oligo(ethylene glycol) methacrylate (OEGMA) and 2-(2- methoxyethoxy) ethyl methacrylate (MEO(2)MA). The polymer exhibited an LCST at 35 degrees C in PBS buffer and was anchored onto gold substrates using disulfide polymerisation initiators. It allows the noninvasive detachment of adherent cells from their substrate. As the mechanisms that determine the interaction of cells with such polymers are not well understood, we employed Total Internal Reflection Fluorescence (TIRF) microscopy in order to monitor the detachment process of cells of two different types. We identified contact area and average cell-substrate distance as crucial parameters for the evaluation of the detachment process. The sensitivity of TIRF microscopy allowed us to correlate the specific adhesion pattern of MCF-7 breast cancer cells with the morphology of cell deposits that may serve as fingerprints for a nondestructive characterisation of live cells. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/sm/index.asp U6 - https://doi.org/10.1039/C0sm00010h SN - 1744-683X ER - TY - JOUR A1 - Glatzel, Stefan A1 - Badi, Nezha A1 - Paech, Michael A1 - Laschewsky, André A1 - Lutz, Jean-Francois T1 - Well-defined synthetic polymers with a protein-like gelation behavior in water N2 - Homopolymers of N-acryloyl glycinamide were prepared by reversible addition-fragmentation chain transfer polymerization in water. The formed macromolecules exhibit strong polymer-polymer interactions in aqueous milieu and therefore form thermoreversible physical hydrogels in pure water, physiological buffer or cell medium. Y1 - 2010 UR - http://xlink.rsc.org/jumptojournal.cfm?journal_code=CC U6 - https://doi.org/10.1039/C0cc00038h SN - 1359-7345 ER - TY - JOUR A1 - Wischerhoff, Erik A1 - Glatzel, Stefan A1 - Uhlig, Katja A1 - Lankenau, Andreas A1 - Lutz, Jean-Francois A1 - Laschewsky, André T1 - Tuning the thickness of polymer brushes grafted from nonlinearly growing multilayer assemblies N2 - A new versatile method for tuning the thickness of surface-tethered polymer brushes is introduced. It is based on the combination of polyelectrolyte multilayer deposition and surface-initiated atom transfer radical polymerization. To control the thickness of the brushes, the nonlinear growth of certain polyelectrolyte multilayer systems is exploited. The method is demonstrated to work with different polyelectrolytes and different monomers. The relevance for applications is demonstrated by cell adhesion experiments oil grafted thermoresponsive polymer layers with varying thickness. Y1 - 2009 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La804197j SN - 0743-7463 ER - TY - JOUR A1 - Wischerhoff, Erik A1 - Badi, Nezha A1 - Lutz, Jean-Francois A1 - Laschewsky, André T1 - Smart bioactive surfaces N2 - The purpose of this highlight is to define the emerging field of bioactive surfaces. In recent years, various types of synthetic materials capable of "communicating'' with biological objects such as nucleic acids, proteins, polysaccharides, viruses, bacteria or living cells have been described in the literature. This novel area of research certainly goes beyond the traditional field of smart materials and includes different types of sophisticated interactions with biological entities, such as reversible adhesion, conformational control, biologically-triggered release and selective permeation. These novel materials may be 2D planar surfaces as well as colloidal objects or 3D scaffolds. Overall, they show great promise for numerous applications in biosciences and biotechnology. For instance, practical applications of bioactive surfaces in the fields of bioseparation, cell engineering, biochips and stem-cell differentiation are briefly discussed herein. Y1 - 2010 UR - http://www.rsc.org/Publishing/Journals/sm/index.asp U6 - https://doi.org/10.1039/B913594d SN - 1744-683X ER - TY - JOUR A1 - Wischerhoff, Erik A1 - Badi, Nezha A1 - Laschewsky, André A1 - Lutz, Jean-Francois ED - Börner, Hans Gerhard ED - Lutz, JF T1 - Smart polymer surfaces concepts and applications in biosciences JF - Advances in polymer science = Fortschritte der Hochpolymeren-Forschung JF - Advances in Polymer Science N2 - Stimuli-responsive macromolecules (i.e., pH-, thermo-, photo-, chemo-, and bioresponsive polymers) have gained exponential importance in materials science, nanotechnology, and biotechnology during the last two decades. This chapter describes the usefulness of this class of polymer for preparing smart surfaces (e.g., modified planar surfaces, particles surfaces, and surfaces of three-dimensional scaffolds). Some efficient pathways for connecting these macromolecules to inorganic, polymer, or biological substrates are described. In addition, some emerging bioapplications of smart polymer surfaces (e.g., antifouling surfaces, cell engineering, protein chromatography, tissue engineering, biochips, and bioassays) are critically discussed. KW - Antifouling surfaces KW - Bioactive surfaces KW - Biocompatible polymers KW - Bioseparation KW - Cell engineering KW - Polymer-modified surfaces KW - Stimuli-responsive polymers Y1 - 2011 SN - 978-3-642-20154-7 U6 - https://doi.org/10.1007/12_2010_88 SN - 0065-3195 VL - 240 IS - 1 SP - 1 EP - 33 PB - Springer CY - Berlin ER - TY - JOUR A1 - Zehm, Daniel A1 - Laschewsky, André A1 - Heunemann, Peggy A1 - Gradzielski, Michael A1 - Prevost, Sylvain A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Lutz, Jean-Francois T1 - Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces JF - Polymer Chemistry N2 - The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains. Y1 - 2011 U6 - https://doi.org/10.1039/c0py00200c SN - 1759-9954 VL - 2 IS - 1 SP - 137 EP - 147 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Buller, Jens A1 - Laschewsky, André A1 - Lutz, Jean-Francois A1 - Wischerhoff, Erik T1 - Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition JF - Polymer Chemistry N2 - A thermosensitive statistical copolymer based on oligo(ethylene glycol) methacrylates incorporating biotin was synthesized by free radical copolymerisation. The influence of added avidin on its thermoresponsive behaviour was investigated. The specific binding of avidin to the biotinylated copolymers provoked a marked increase of the lower critical solution temperature. Y1 - 2011 U6 - https://doi.org/10.1039/c1py00001b SN - 1759-9954 VL - 2 IS - 7 SP - 1486 EP - 1489 PB - Royal Society of Chemistry CY - Cambridge ER -